当前位置: 首页 > news >正文

无穷级数重要知识点

  1. 部分和

s = ∑ i = 1 n u i s = \sum_{i=1}^{n} u _{i} s=i=1nui

注意:部分和不是数列的一部分之和,而是一个极限的概念,此处的n是一个极限值, n 趋于正无穷! \color{red}n趋于正无穷! n趋于正无穷!一定要注意。

  1. 调和级数

1 + 1 2 + 1 3 + 1 4 + 1 5 + . . . + 1 n − 2 + 1 n − 1 + 1 n (1.1) 1 + \frac{1}{2} + \frac{1}{3} +\frac{1}{4} +\frac{1}{5} +... + \frac{1}{n-2} + \frac{1}{n-1} + \frac{1}{n} \tag{1.1} 1+21+31+41+51+...+n21+n11+n1(1.1)

调和级数可以化为如下积分式:

∫ 1 + ∞ 1 x d x = ln ⁡ x ∣ 1 + ∞ = ∞ \int_{1}^{+\infty} \frac{1}{x}dx = \ln x |_{1}^{+\infty} = \infty 1+x1dx=lnx1+=

可见调和级数发散。

调和级数是一个重要级数,是判断其他级数收敛的参考。若一个级数大于调和级数,则必定发散,若一个级数是调和级数的无穷小,则一定收敛。

  1. 级数收敛的必要非充分条件

若级数 ∑ i = 1 + ∞ u i \sum_{i= 1}^{+\infty} u_{i} i=1+ui收敛,则一般项 u i u_{i} ui的极限为0。

此条件是级数收敛的必要条件而非充分条件。比如调和级数的一般项为0但是并不收敛。

  1. 达朗贝尔判别法

正向级数 ∑ i = 1 + ∞ u i 若 lim ⁡ i → + ∞ u i + 1 u i > 1 则级数发散 若 lim ⁡ i → + ∞ u i + 1 u i < 1 则级数收敛 若 lim ⁡ i → + ∞ u i + 1 u i = 1 则无法判别敛散性 \color{red}正向级数\sum_{i= 1}^{+\infty} u_{i} \\ 若\lim_{i \to +\infty} \frac{u_{i+1}}{u_{i}} > 1则级数发散\\ 若\lim_{i \to +\infty} \frac{u_{i+1}}{u_{i}} < 1则级数收敛\\ 若\lim_{i \to +\infty} \frac{u_{i+1}}{u_{i}} =1则无法判别敛散性 正向级数i=1+uii+limuiui+1>1则级数发散i+limuiui+1<1则级数收敛i+limuiui+1=1则无法判别敛散性

证明:
(1)若 lim ⁡ i → + ∞ u i + 1 u i = ρ > 1 , 即 u i + 1 > u i , 即 u i + 1 = k u i , k > 1 \lim_{i \to +\infty} \frac{u_{i+1}}{u_{i}} =\rho >1, 即u_{i+1} >u_{i}, 即u_{i+1} = ku_{i},k> 1 limi+uiui+1=ρ>1,ui+1>ui,ui+1=kui,k>1

(2)若 lim ⁡ i → + ∞ u i + 1 u i = ρ < 1 , 即 u i + 1 < u i , 即 u i + 1 = k u i , k < 1 \lim_{i \to +\infty} \frac{u_{i+1}}{u_{i}} =\rho <1, 即u_{i+1} <u_{i}, 即u_{i+1} = ku_{i},k < 1 limi+uiui+1=ρ<1,ui+1<ui,ui+1=kui,k<1

通过考察等比数列(几何级数)的求和公式: a 1 1 − q n 1 − q a_{1}\frac{1-q^{n}}{1- q} a11q1qn
当公比q大于1时,几何级数发散,当q小于1时几何级数收敛于 a 1 1 1 − q a_{1} \frac{1}{1-q} a11q1

故达朗贝尔判别法得证。

  1. 柯西判别法

正向级数 ∑ i = 1 + ∞ u i 若 lim ⁡ i → + ∞ n n > 1 则级数发散 若 lim ⁡ i → + ∞ n n < 1 则级数收敛 若 lim ⁡ i → + ∞ n n = 1 则无法判别敛散性 \color{red}正向级数\sum_{i= 1}^{+\infty} u_{i} \\ 若\lim_{i \to +\infty} \sqrt [n] n> 1则级数发散\\ 若\lim_{i \to +\infty}\sqrt [n] n < 1则级数收敛\\ 若\lim_{i \to +\infty} \sqrt [n] n =1则无法判别敛散性 正向级数i=1+uii+limnn >1则级数发散i+limnn <1则级数收敛i+limnn =1则无法判别敛散性

证明方式也参考达朗贝尔判别法。

5. 极限审敛法
正向级数 ∑ i = 1 + ∞ u i 若 lim ⁡ i → + ∞ n u i = l > 0 则级数发散 若 lim ⁡ i → + ∞ n p u i = l > = 0 ( p > 1 ) 则级数收敛 \color{red}正向级数\sum_{i= 1}^{+\infty} u_{i} \\ 若\lim_{i \to +\infty} n u_{i} = l > 0则级数发散\\ 若\lim_{i \to +\infty} n^p u_{i} = l >= 0(p > 1)则级数收敛 正向级数i=1+uii+limnui=l>0则级数发散i+limnpui=l>=0(p>1)则级数收敛

  1. 例题

讨论p级数的敛散性:
1 + 1 2 p + 1 3 p + 1 4 p + . . . + 1 ( n − 1 ) p + 1 n p 1 + \frac{1}{2^p}+ \frac{1}{3^p}+ \frac{1}{4^p}+ ... + \frac{1}{(n-1)^p}+ \frac{1}{n^p} 1+2p1+3p1+4p1+...+(n1)p1+np1

http://www.lryc.cn/news/157004.html

相关文章:

  • 【MyBatis】快速入门
  • 【gtpJavaScript】使用JavaScript实现套壳gtp与gtp打字输出效果
  • C++内存管理(2)new、delete详解
  • ELK集群搭建流程(实践可用)
  • react-quill富文本 中文输入法触发change问题
  • Upload-labs 1~15 通关详细教程
  • ChatGPT分析日本排放核污水对世界的影响
  • eclipse进入断点之后,一直卡死,线程一直在运行【记录一种情况】
  • 2.5 动态字符串 String (完整源码)
  • Ansible之变量
  • 自动化测试面试常见技术题目
  • aarch64 arm64 部署 stable diffusion webui 笔记 【2】继续安装其他依赖 gfpgan
  • 使用ECS和RDS部署WordPress,搭建个人博客并使用域名访问
  • C# Winform 简单排期实现(DevExpress TreeList)
  • 2023高教社杯国赛数学建模C题思路+模型+代码(9.7晚开赛后第一时间更新)
  • QT6中添加串口模块SerialPort最简单方法
  • LeetCode每日一题:1123. 最深叶节点的最近公共祖先(2023.9.6 C++)
  • Oracle查看锁表和正在执行的Sql
  • Linux centos 卸载 ceph
  • ElementUI浅尝辄止34:Radio 单选框
  • 开始MySQL之路——MySQL三大日志(binlog、redo log和undo log)概述详解
  • router基础使用
  • 亚马逊云科技人工智能内容审核服务:大大降低生成不安全内容的风险
  • 2023年高教社杯数学建模思路 - 案例:最短时间生产计划安排
  • 算法工程题(二叉树递归)
  • “指针跃动”受邀参加全球贸易服务峰会
  • Go Web开发的高级技巧和最佳实践
  • Verilog 基础知识
  • element ui 表格组件与分页组件的二次封装
  • 递归算法学习——有效的数独,解数独