当前位置: 首页 > news >正文

《机器人学一(Robotics(1))》_台大林沛群 第 5 周【机械手臂 轨迹规划】 Quiz 5

我又行了!🤣

求解的 位置 可能会有 变动,根据求得的A填写相应值即可。注意看题目。

coursera链接

文章目录

      • 第1题 Cartesian space
        • 求解 题1-3 的 Python 代码
      • 第2题
      • 第3题
      • 第4题 Joint space
        • 求解 题4-6 的 Python 代码
      • 第5题
      • 第6题
        • 其它可参考代码 Python

笛卡尔空间:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

第1题 Cartesian space

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

求解 题1-3 的 Python 代码

import numpy as np Δt1 = 2 - 0
Δt2 = 4 - 2
Δt3 = 9 - 4T = [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[1, Δt1, Δt1**2, Δt1**3, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, Δt2, Δt2**2, Δt2**3, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, Δt3, Δt3**2, Δt3**3],[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2*Δt3, 3*Δt3**2],[0, 1, 2*Δt1, 3*Δt1**2, 0, -1, 0, 0, 0, 0, 0, 0],[0, 0, 2, 6*Δt1, 0, 0, -2, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 1, 2*Δt2, 3*Δt2**2, 0, -1, 0, 0],[0, 0, 0, 0, 0, 0, 2, 6*Δt2, 0, 0, -2, 0] ]  ## 需要仔细 检查, 很容易 打错def getA(θ):θ = np.array(θ)A = np.dot(np.linalg.inv(T), θ.T)A = np.around(A, decimals = 2)  ## 结果 保留 到 小数点 后 两位return A ## X 的导数 为 速度, 初始和末尾的速度均为0
X = [-4, -5, -5, 2, 2, 2, 0, 0, 0, 0, 0, 0]
print('X_A:')
print(getA(X))## Y 的导数 为 速度, 初始和末尾的速度均为0
Y = [0, 5, 5, 3, 3, -3, 0, 0, 0, 0, 0, 0]
print('\nY_A:')
print(getA(Y))## θ 
θ = [120, 45, 45, 30, 30, 0, 0, 0, 0, 0, 0, 0]
print('\nθ_A:')
print(getA(θ))

矩阵合并版本:

import numpy as np np.set_printoptions(suppress = True)Δt1 = 2 - 0
Δt2 = 4 - 2
Δt3 = 9 - 4T = [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[1, Δt1, Δt1**2, Δt1**3, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, Δt2, Δt2**2, Δt2**3, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, Δt3, Δt3**2, Δt3**3],[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2*Δt3, 3*Δt3**2],[0, 1, 2*Δt1, 3*Δt1**2, 0, -1, 0, 0, 0, 0, 0, 0],[0, 0, 2, 6*Δt1, 0, 0, -2, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 1, 2*Δt2, 3*Δt2**2, 0, -1, 0, 0],[0, 0, 0, 0, 0, 0, 2, 6*Δt2, 0, 0, -2, 0] ]def getA(Θ):   ## 这里  直接使用矩阵 A = np.dot(np.linalg.inv(T), Θ)A = np.around(A, decimals = 2)  ## 结果 保留 到 小数点 后 两位return A Θ = [[-4, 0, 120],[-5, 5, 45],[-5, 5, 45],[2, 3, 30],[2, 3, 30],[2, -3, 0],[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
print('A:')
print(getA(Θ))

在这里插入图片描述

第1题答案: -5//1.44//2.19//-0.58

第2题

在这里插入图片描述

第2题答案: 5//1.67//-2.08//0.37

第3题

在这里插入图片描述
第3题答案: 120//0//-39.18//10.21

第4题 Joint space

在这里插入图片描述

根据这个,需要求解 每个 位姿下的 (θ1,θ2,θ3)
在这里插入图片描述

第4周的PPT:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

求解 题4-6 的 Python 代码

### 已知  (x, y, θ),求解 (θ1, θ2, θ3)
import numpy as np
import math  ##  atan2(y, x, /)### 获取 等号左边的 [θ1, θ2, θ3]   矩阵
l1 = 5
l2 = 3
l3 = 1###  方法一: 通过几何法  求解
def RRR_geometric(x, y, θ):    θ2 = np.arccos((x**2 + y**2 - l1**2 - l2**2)/(2*l1*l2))ψ = np.arccos((l2**2 - x**2 - y**2 - l1**2)/(-2 * l1 * np.sqrt(x**2 + y**2)))   if θ2 < 0:θ1 = math.atan2(y, x) +  ψ   ## np.arctan2(y,x) 也可else:θ1 = math.atan2(y, x) -  ψθ = np.pi * θ / 180  ## 角度 换 弧度θ3 = θ - θ1 - θ2return [θ1, θ2, θ3]### 方法二: 代数解
def RRR_algebraic(x, y, θ):θ2 = np.arccos((x**2 + y**2 - l1**2 - l2**2)/(2*l1*l2))k1 = l1 + l2 * np.cos(θ2)k2 = l2 * np.sin(θ2)θ1 = math.atan2(y, x) - math.atan2(k2, k1)  ## np.arctan2(y,x) 也可θ = np.pi * θ / 180  ## 角度 换 弧度θ3 = θ - θ1 - θ2return [θ1, θ2, θ3]x0, y0, θ0 = -4, 0, 120
x1, y1, θ1 = -5, 5, 45
x2, y2, θ2 = 2, 3, 30
xf, yf, θf = 2, -3, 0##  选择其中一种方法计算 即可
# 法1:几何法   代入
# θ_3col = [RRR_geometric(x0, y0, θ0),
#          RRR_geometric(x1, y1, θ1),RRR_geometric(x1, y1, θ1),
#          RRR_geometric(x2, y2, θ2),RRR_geometric(x2, y2, θ2),
#          RRR_geometric(xf, yf, θf),
#          [0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0]]   ## 注意 返回 结果那样,这里就不用中括号了
## 法2: 解析解   代入
θ_3col = [RRR_algebraic(x0, y0, θ0),RRR_algebraic(x1, y1, θ1),RRR_algebraic(x1, y1, θ1),RRR_algebraic(x2, y2, θ2),RRR_algebraic(x2, y2, θ2),RRR_algebraic(xf, yf, θf),[0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0],[0, 0, 0]] 
# print(θ_3col)
#######################################################
####  求解 A
Δt1 = 2 - 0
Δt2 = 4 - 2
Δt3 = 9 - 4T = [[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[1, Δt1, Δt1**2, Δt1**3, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, Δt2, Δt2**2, Δt2**3, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, Δt3, Δt3**2, Δt3**3],[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2*Δt3, 3*Δt3**2],[0, 1, 2*Δt1, 3*Δt1**2, 0, -1, 0, 0, 0, 0, 0, 0],[0, 0, 2, 6*Δt1, 0, 0, -2, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 1, 2*Δt2, 3*Δt2**2, 0, -1, 0, 0],[0, 0, 0, 0, 0, 0, 2, 6*Δt2, 0, 0, -2, 0] ]def getA(θ):   ## 这里  直接使用矩阵 A = np.dot(np.linalg.inv(T), θ)A = np.around(A, decimals = 2)  ## 结果 保留 到 小数点 后 两位return A print('θ_A:')
print(getA(θ_3col)) 

在这里插入图片描述
第4题答案: 1.99//-0.6//-0.22//0.05

第5题

在这里插入图片描述

第5题答案: 2.21//0//-0.83//0.27

第6题

在这里插入图片描述
第6题答案: -2.62//0//0.23//-0.07

其它可参考代码 Python

github链接

http://www.lryc.cn/news/156903.html

相关文章:

  • 嵌入式面试/笔试C相关总结
  • 支付宝使用OceanBase的历史库实践分享
  • accelerate 分布式技巧(一)
  • 密码找回安全
  • Spring Boot + Vue的网上商城之商品管理
  • B站:提高你的词汇量:如何用英语谈论驾驶
  • 大前端面试注意要点
  • 稻盛和夫-如是说(读书笔记)
  • Jmeter是用来做什么的?
  • Docker基础教程
  • Linux命令200例:who用于显示当前登录到系统的用户信息
  • HGDB-修改分区表名称及键值
  • 1分钟了解音频、语音数据和自然语言处理的关系
  • 线性代数的学习和整理20,关于向量/矩阵和正交相关,相似矩阵等
  • OpenCV之ellipse函数
  • git快速查看某个文件修改的所有commit
  • 加强版python连接飞书通知——本地电脑PC端通过网页链接打开本地已安装软件(调用注册表形式,以漏洞扫描工具AppScan为例)
  • Jmeter进阶使用指南-使用断言
  • 44、Flink之module模块介绍及使用示例和Flink SQL使用hive内置函数及自定义函数详细示例--网上有些说法好像是错误的
  • 电脑入门: 路由器初学者完全教程
  • 如何查找GNU C语言参考手册
  • 弄懂软件设计模式(一):单例模式和策略模式
  • Redis----布隆过滤器
  • day 49 | 647. 回文子串 ● 516.最长回文子序列
  • 【网络编程】C++实现网络通信服务器程序||计算机网络课设||Linux系统编程||TCP协议(附源码)
  • C语言类型占内存大小
  • 使用GPT-4生成训练数据微调GPT-3.5 RAG管道
  • RUST 每日一省:模式匹配
  • 利用Jmeter做接口测试(功能测试)全流程分析
  • 依赖导入失败场景和解决方案