当前位置: 首页 > news >正文

最小生成树Kruskal、Prim算法C++

什么是最小生成树

连通图:

在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1和顶点v2是连通的。如果图中任意一对顶点都是连通的,则称此图为连通图。

生成树:

一个连通图的最小连通子图称作为图的生成树。有n个顶点的连通图的生成树有n个顶点和n-1条边。

最小生成树:

最小生活树是生成树的一个特殊情况,它的边权之和最小。其特点如下:

  1. 只能使用图中权值最小的边来构造最小生成树
  2. 只能使用恰好n-1条边来连接图中的n个顶点
  3. 选用的n-1条边不能构成回路(构成回路会导致有顶点为连通或权值过大)

最小生成树的实际应用

例如城市道路铺设中,如果我们直接使用连通结构,这样两点间的交通必然是最便捷的。可是修路的成本的巨大的,但是又要连通所有城市,这便会想到使用最小生成树。

考虑到经济发达城市人口多、车辆多,我们还需要为其多修建一些道路,则实际中的道路修建与最小生成树的结果不同,但是最小生成树在这些实际场景发挥了很大作用。

Kruskal算法

任给一个有n个顶点的连通网络N = {V,E}。

首先构造一个由这n个顶点组成、不含任何边的图G={V,null},其中每个顶点自成一个连通分量,其次不断从E中取出权值最小的一条边(若有多条任取其中之一),若该边的两个顶点来自不同的连通分量,则将此边加入到G中。如此重复,知道所有顶点在同一个连通分量上为止。

算法思路

核心:每次迭代时,选出一条具有最小权值,且两端点不在同一连通分量上的边,加入生成树。

将权值小的边放入到优先级队列中。依次类推

接下来有一个问题,因为生成树不能构成回路,所以在添加边的时候要处理成环问题。

这个问题的解决就要使用并查集;如果该边已经出现过了,则不选择该边,如果该边不在集合中,则可以选择该边

以下是选边的全部过程:

代码实现

首先我们要创建一个边的数据结构Edge,用于将边存放到优先级队列中。

struct Edge
{size_t _srci;size_t _dsti;W _w;Edge(size_t srci, size_t dsti, W w):_srci(srci), _dsti(dsti), _w(w){}//还要提供一个比较函数,因为优先级队列中使用到了greater,greater会调用>函数bool operator > (const Edge& ed) const{return _w > ed._w;}
};

实现思路:

1. 将所有的边统计到优先级队列中,(注意临界矩阵只遍历一半)

2. 从优先级队列中选出n-1条边,n为顶点数量

3. 依次取出队列中的元素,判断该元素是否出现过(使用并查集)

4. 如果没有出现过,则添加该边到最小生成树中,并将该边添加到并查集中,再统计权值。

5. 当队列元素取空时,最小生成树中边的数量小于n-1,则表示该图没有连通,则没有最小生成树,直接返回权值的默认值即可。

6. 如果size等于n-1,则表示最小生成树创建成功,返回权值总和即可

//最小生成树
//如果有最小生成树,则返回该树的权值,如果没有最小生成树,则返回默认值
W Kruskal(Self& minTree)
{//初始化minTreesize_t n = _vertexs.size();minTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix = vector<vector<W>>(n, vector<W>(n, MAX_W));//1. 将边统计起来,使用优先级队列或排序的方式都可以   priority_queue<Edge, vector<Edge>, greater<Edge>> minque;for (size_t i = 0; i < n; i++){//矩阵中走一半即可  要不然会重复入队列for (size_t j = 0; j < i; j++){if (_matrix[i][j] != MAX_W){minque.push(Edge(i, j, _matrix[i][j]));}}}//2.选出n-1条边size_t size = 0;UnionFindSet ufs(n);   //n个顶点W total_W{};            //总的权值while (!minque.empty() && size < n){Edge min = minque.top();minque.pop();//3.选出一条边之后看该边在不在当前集合,//在就不选择该边,不在就选择该边,并标记if (!ufs.IsInset(min._srci, min._dsti)){cout << _vertexs[min._srci] << "-" << _vertexs[min._dsti] <<":" << _matrix[min._srci][min._dsti] << endl;minTree._AddEdge(min._srci, min._dsti, min._w);ufs.Union(min._srci, min._dsti);size++;total_W += min._w;}}//如果该图不是连通图,则没有最小生成树if (size < n - 1){return W();}return total_W;
}

接下来是一些要注意的点:

1. 要将最小生成树进行初始化,否则添加边时会出现越界问题。

2. 最小生成树其实就是该图的子图,typedef Graph<V, W, MAX_W, Direction> Self; 

3. 注意将顶点放入到并查集中,防止边的重复。

测试用例

void TestGraphMinTree()
{const char* str = "abcdefghi";matrix::Graph<char, int> g(str, strlen(str));g.AddEdge('a', 'b', 4);g.AddEdge('a', 'h', 8);//g.AddEdge('a', 'h', 9);g.AddEdge('b', 'c', 8);g.AddEdge('b', 'h', 11);g.AddEdge('c', 'i', 2);g.AddEdge('c', 'f', 4);g.AddEdge('c', 'd', 7);g.AddEdge('d', 'f', 14);g.AddEdge('d', 'e', 9);g.AddEdge('e', 'f', 10);g.AddEdge('f', 'g', 2);g.AddEdge('g', 'h', 1);g.AddEdge('g', 'i', 6);g.AddEdge('h', 'i', 7);matrix::Graph<char, int> kminTree;cout << "Kruskal:" << g.Kruskal(kminTree) << endl;kminTree.Print();
}

Prim算法

算法思路

Prim算法所具有的一个性质是集合A中的边总是构成一棵树。这棵树从一个任意的根节点r开始,一直扩大到图中的所有顶点为止。在每一步连接集合A和A之外的顶点的所有边中,选择一条权值最小的边加入到A中。当算法结束时,A中的边形成一棵最小生成树。

因为添加边只会在当前集合中没有的顶点中进行,所以Prim算法天然避免环的生成,不需要使用并查集来避免环的产生。

代码实现

实现思路:

1. 使用两个数组表示X、Y集合,用于表示当前顶点是否被访问。

2. 从X集合中的顶点选出所有的边,可以使用优先级队列来存放边。

3. 依次从优先级队列中选出权值最小的边

4. 判断该边是否成环---即dest顶点必须在Y集合中

5. 在Y集合中则将该边添加到最小生成树中,然后进行顶点的标记

6. 再将dest顶点连通的边再放入队列中,同时也要判断dest连接的顶点归属Y集合。

7. 如果选出n-1条边,返回生成树的总权值,否则返回默认值


W  Prim(Self& minTree, const W& src)   //src表示从哪个起点开始
{size_t srci = GetVertexIndex(src);size_t n = _vertexs.size();//初始化minTreeminTree._vertexs = _vertexs;minTree._indexMap = _indexMap;minTree._matrix = vector<vector<W>>(n, vector<W>(n, MAX_W));//两个数组表示X、Y集合,用于表示当前顶点是否被访问vector<bool> X(n, false);vector<bool> Y(n, true);//初始化X,Y集合X[srci] = true;Y[srci] = false;//从X-Y集合连接中的边选出权值最小的边priority_queue<Edge, vector<Edge>, greater<Edge>> minque;//先把srci连接的边添加到队列中for (size_t i = 0; i < n; i++){if (_matrix[srci][i] != MAX_W){minque.push(Edge(srci, i, _matrix[srci][i]));}}size_t size = 0;W total_W = W();while (!minque.empty()){Edge min = minque.top();minque.pop();if (Y[min._dsti])  //该顶点必须还在Y集合中   注意!!{cout << _vertexs[min._srci] << "-" << _vertexs[min._dsti] <<":" << _matrix[min._srci][min._dsti] << endl;minTree._AddEdge(min._srci, min._dsti, min._w);total_W += min._w;size++;if (size == n - 1)break;X[min._dsti] = true;Y[min._dsti] = false;//将dsti的边进行遍历for (size_t i = 0; i < n; i++){if (_matrix[min._dsti][i] != MAX_W && Y[i])    //有连通,并且是Y集合中的顶点{minque.push(Edge(min._dsti, i, _matrix[min._dsti][i]));}}}}//如果该图不是连通图,则没有最小生成树if (size < n - 1){return W();}return total_W;
}

测试用例

void TestGraphMinTree()
{const char str[] = "abcdefghi";matrix::Graph<char, int> g(str, strlen(str));g.AddEdge('a', 'b', 4);g.AddEdge('a', 'h', 8);g.AddEdge('b', 'c', 8);g.AddEdge('b', 'h', 11);g.AddEdge('c', 'i', 2);g.AddEdge('c', 'f', 4);g.AddEdge('c', 'd', 7);g.AddEdge('d', 'f', 14);g.AddEdge('d', 'e', 9);g.AddEdge('e', 'f', 10);g.AddEdge('f', 'g', 2);g.AddEdge('g', 'h', 1);g.AddEdge('g', 'i', 6);g.AddEdge('h', 'i', 7);/*matrix::Graph<char, int> kminTree;cout << "Kruskal:" << g.Kruskal(kminTree) << endl;kminTree.Print();*/cout << "prim算法的实现" << endl;matrix::Graph<char, int> pminTree;cout << "Prim:" << g.Prim(pminTree, 'a') << endl;pminTree.Print();
}

最后细心的你可以会发现,两种算法的结果权值都是37,但是其生成的最小生成树是不同的,这就好比一个正三角形,三个顶点所在的位置,无论连接哪条线,其都是最小生成树,所以不唯一。

http://www.lryc.cn/news/155823.html

相关文章:

  • 系统架构设计师-计算机系统基础知识(2)
  • 二叉树的介绍
  • 数据结构与算法复杂度介绍
  • CentOS 安装蒲公英
  • 英语语法基础--思维导图
  • Android泛型详解
  • C++信息学奥赛1178:成绩排序
  • 【计算机视觉 | 目标检测】目标检测常用数据集及其介绍(七)
  • 100天精通Golang(基础入门篇)——第20天:Golang 接口 深度解析☞从基础到高级
  • ESXi 6.7添加螃蟹2.5g网卡支持
  • 机器学习笔记之最优化理论与方法(四) 凸函数:定义与基本性质
  • 【Git】git tag 查看版本号 | 删除本地 | 删除远程仓库| 批量删除
  • thinkphp:数据库查询,嵌套别的表的查询(别的表做子查询)
  • 《Linux 系统命令及Shell脚本实践指南》
  • 代码随想录算法训练营第三十八天 | ● 理论基础 ● 509. 斐波那契数 ● 70. 爬楼梯 ● 746. 使用最小花费爬楼梯
  • Java分别用BIO、NIO实现简单的客户端服务器通信
  • React Portals
  • Python基础之高级函数
  • CSS3常用的新功能总结
  • Lvs+KeepAlived高可用高性能负载均衡
  • 无涯教程-Android Online Test函数
  • 蓝桥杯打卡Day1
  • zipkin2.24.2源码install遇见的问题
  • yapi密码是如何生成的
  • 2023-09-02 LeetCode每日一题(最多可以摧毁的敌人城堡数目)
  • k8s环境部署配置
  • Java之文件操作与IO
  • 指令系统(408)
  • Pygame中Trivia游戏解析6-3
  • 热释电矢量传感器设计