当前位置: 首页 > news >正文

大模型综述论文笔记6-15

这里写自定义目录标题

  • Keywords
  • Backgroud for LLMs
    • Technical Evolution of GPT-series Models
      • Research of OpenAI on LLMs can be roughly divided into the following stages
        • Early Explorations
        • Capacity Leap
        • Capacity Enhancement
        • The Milestones of Language Models
  • Resources
  • Pre-training
    • Data Collection
    • Data Preprocessing
      • Quality Filtering
      • De-duplication

Keywords

GPT:Generative Pre-Training

Backgroud for LLMs

Technical Evolution of GPT-series Models

Two key points to GPT’s success are (I) training decoder-onlly Transformer language models that can accurately predict the next word and (II) scaling up the size of language models

Research of OpenAI on LLMs can be roughly divided into the following stages

Early Explorations

请添加图片描述

Capacity Leap

ICT

Capacity Enhancement

1.training on code data
Codex: a GPT model fine-tuned on a large corpus of GitHub
code
2.alignment with human preference
reinforcement learning from human feedback (RLHF) algorithm

Note that it seems that the wording of “instruction tuning” has seldom
been used in OpenAI’s paper and documentation, which is substituted by
supervised fine-tuning on human demonstrations (i.e., the first step
of the RLHF algorithm).

The Milestones of Language Models

chatGPT(based on gpt3.5 and gpt4) and GPT-4(multimodal)

Resources

在这里插入图片描述
Stanford Alpaca is the first open instruct-following model fine-tuned based on LLaMA (7B).
Alpaca LoRA (a reproduction of Stanford Alpaca using LoRA)

model 、data、library

Pre-training

在这里插入图片描述

Data Collection

General Text Data:webpages, books, and conversational text
Specialized Text Data:Multilingual text, Scientific text, Code

Data Preprocessing

Quality Filtering

  1. The former approach trains a selection classifier based on highquality texts and leverages it to identify and filter out low quality data.
  2. heuristic based approaches to eliminate low-quality texts through a set of well-designed rules: Language based filtering, Metric based filtering, Statistic based filtering, Keyword based filtering

De-duplication

Existing work has found that duplicate data in a corpus would reduce the diversity of language models, which may cause the training process to become unstable and thus affect the model performance.

  1. Privacy Redaction: (PII:personally identifiable information )
  2. Tokenization:(It aims to segment raw text into sequences of individual tokens, which are subsequently used as the inputs of LLMs.) Byte-Pair Encoding (BPE) tokenization; WordPiece tokenization; WordPiece tokenization
http://www.lryc.cn/news/153692.html

相关文章:

  • 树的介绍(C语言版)
  • Android studio实现圆形进度条
  • 基于Halcon的喷码识别方法
  • 【Sword系列】Vulnhub靶机HACKADEMIC: RTB1 writeup
  • idea使用maven时的java.lang.IllegalArgumentException: Malformed \uxxxx encoding问题解决
  • linux深入理解多进程间通信
  • 使用自定义注解+aop实现公共字段的填充
  • Unity 安卓(Android)端AVProVideo插件播放不了视频,屏幕一闪一闪的
  • 无涯教程-JavaScript - DMIN函数
  • GaussDB数据库SQL系列-层次递归查询
  • pycharm 下jupyter noteobook显示黑白图片不正常
  • Java异常(Error与Exception)与常见异常处理——第八讲
  • 【JAVA】多态
  • android 12 第三方apk系统签名
  • 【论文阅读】自动驾驶中车道检测系统的物理后门攻击
  • ArrayList、LinkedList、Collections.singletonList、Arrays.asList与ImmutableList.of
  • 恒运资本:沪指涨逾1%,金融、地产等板块走强,北向资金净买入超60亿元
  • 解决WebSocket通信:前端拿不到最后一条数据的问题
  • 【java】[maven]每次创建一个maven模块时java compiler版本就是1.6与实际版本不一致(解决本质问题)
  • GPT-5继续秘密训练中!ChatGPT开学大礼包
  • 3.2.0 终极预告!云原生支持新增 Spark on k8S 支持
  • Flutter状态管理 — 探索Flutter中的状态
  • Python中重要的条件语句教程
  • 记录一下自己对linux分区挂载的理解
  • 【机器学习】人工智能概述(文末送书)
  • 电子学会 2023年3月 青少年软件编程Python编程等级考试三级真题解析(选择题+判断题+编程题)
  • C++算法 —— 动态规划(1)斐波那契数列模型
  • Elasticsearch 对比传统数据库:深入挖掘 Elasticsearch 的优势
  • ICG-Tetrazine的合成方法和步骤-星戈瑞
  • C ++ 学习之分文件 实现类