当前位置: 首页 > news >正文

因果推断(六)基于微软框架dowhy的因果推断

因果推断(六)基于微软框架dowhy的因果推断

DoWhy 基于因果推断的两大框架构建:「图模型」「潜在结果模型」。具体来说,其使用基于图的准则与 do-积分来对假设进行建模并识别出非参数化的因果效应;而在估计阶段则主要基于潜在结果框架中的方法进行估计。DoWhy 的整个因果推断过程可以划分为四大步骤:

  • 「建模」(model):利用假设(先验知识)对因果推断问题建模
  • 「识别」(identify):在假设(模型)下识别因果效应的表达式(因果估计量)
  • 「估计」(estimate):使用统计方法对表达式进行估计
  • 「反驳」(refute):使用各种鲁棒性检查来验证估计的正确性

同样的,不过多涉及原理阐述,具体的可以参考因果推断框架 DoWhy 入门。

准备数据

# !pip install dowhy
import pandas as pd
from dowhy import CausalModel
from IPython.display import Image, display
import warnings
warnings.filterwarnings('ignore') # 设置warning禁止

以下数据如果有需要的同学可关注公众号HsuHeinrich,回复【因果推断06】自动获取~

raw_data = pd.read_csv('BankChurners.csv')
raw_data.head()

image-20230206154959547

特征工程

# 计算高额信贷:信贷额度超过20000
raw_data['High_limit'] = raw_data['Credit_Limit'].apply(lambda x: True if x > 20000 else False)
# 定义流失用户
raw_data['Churn'] = raw_data['Attrition_Flag'].apply(lambda x: True if x == 'Attrited Customer' else False)
# 剔除
  • 目标变量(Y):Churn
  • 干预变量(V/treatment):High_limit
  • 混淆变量(W):其他变量

这里通过随机试验进行简单的因果关系判断:

# 随机试验简单判断因果关系
def simple_cause(df, y, treatment, n_sample):counts_sum=0for i in range(1,10000):counts_i = 0rdf = df.sample(n_sample)counts_i = rdf[rdf[y] == rdf[treatment]].shape[0]counts_sum+= counts_ireturn counts_sum/10000simple_cause(raw_data, 'Churn', 'High_limit', 1000)

750.6551 \displaystyle 750.6551 750.6551

  • 对X~Y进行随机试验,随机取1000个观测,统计y=treatment的次数,如果越接近于500,则越无法确定因果关系,越接近0/1则估计存在因果
  • 对上述实验随机进行了10000次,得到y=treatment的次数均值为750。因此假设存在一定的因果关系

因果推断建模

定义问题

y = 'Churn'
treatment = 'High_limit'
W = raw_data.drop([y, treatment, 'Credit_Limit', 'Attrition_Flag'], axis=1).columns.to_list()

问题定义为:额度限制是影响客户流失的原因,因为低限制类别的人可能不那么忠诚于银行

因果图建模

# 定义训练集:y+treatment+W
train = raw_data[[y, treatment]+W].copy()
# 定义因果图的先验假设
causal_graph = """
digraph {
High_limit;
Churn;
Income_Category;
Education_Level;
U[label="Unobserved Confounders"];
Education_Level->High_limit; Income_Category->High_limit;
U->Churn;
High_limit->Churn; Income_Category -> Churn;
}
"""
# 因果图绘制
model= CausalModel(data = train,graph=causal_graph.replace("\n", " "),treatment=treatment,outcome=y)
model.view_model()

output_75_0

先验假设:额度高限制影响流失;收入类别影响额度限制从而影响流失;教育程度影响额度限制;其他混淆因素影响流失

识别

# 识别因果效应的估计量
ie = model.identify_effect()
print(ie)
Estimand type: nonparametric-ate### Estimand : 1
Estimand name: backdoor
Estimand expression:d                                          
────────────(Expectation(Churn|Income_Category))
d[Highₗᵢₘᵢₜ]                                    
Estimand assumption 1, Unconfoundedness: If U→{High_limit} and U→Churn then P(Churn|High_limit,Income_Category,U) = P(Churn|High_limit,Income_Category)### Estimand : 2
Estimand name: iv
Estimand expression:
Expectation(Derivative(Churn, [Education_Level])*Derivative([High_limit], [Edu
cation_Level])**(-1))
Estimand assumption 1, As-if-random: If U→→Churn then ¬(U →→{Education_Level})
Estimand assumption 2, Exclusion: If we remove {Education_Level}→{High_limit}, then ¬({Education_Level}→Churn)### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!
  • 我们称干预Treatment导致了结果Outcome,当且仅当在其他所有状况不变的情况下,干预的改变引起了结果的改变
  • 因果效应即干预发生一个单位的改变时,结果变化的程度。通过因果图的属性来识别因果效应的估计量
  • 根据先验假设,模型支持backdoor、和iv准则下的两者因果关系。具体的因果表达式见打印结果

估计因果效应

# 根据倾向得分的逆概率加权估计
estimate = model.estimate_effect(ie,method_name="backdoor.propensity_score_weighting")
print(estimate)
propensity_score_weighting
*** Causal Estimate ***## Identified estimand
Estimand type: nonparametric-ate### Estimand : 1
Estimand name: backdoor
Estimand expression:d                                          
────────────(Expectation(Churn|Income_Category))
d[Highₗᵢₘᵢₜ]                                    
Estimand assumption 1, Unconfoundedness: If U→{High_limit} and U→Churn then P(Churn|High_limit,Income_Category,U) = P(Churn|High_limit,Income_Category)## Realized estimand
b: Churn~High_limit+Income_Category
Target units: ate## Estimate
Mean value: -0.028495525240213704

估计平均值为-0.03,表明具有高额度限制的客户流失率降低了3%

反驳结果

# 随机共同因子检验:用随机选择的子集替换给定的数据集,如果假设是正确的,则估计值不应有太大变化。
refutel = model.refute_estimate(ie, estimate, "random_common_cause")
print(refutel)
Refute: Add a random common cause
Estimated effect:-0.028495525240213704
New effect:-0.02852304490516341
p value:0.96
# 数据子集:用随机选择的子集替换给定的数据集,如果假设是正确的,则估计值不应有太大变化。
refutel = model.refute_estimate(ie, estimate, "data_subset_refuter")
print(refutel)
Refute: Use a subset of data
Estimated effect:-0.028495525240213704
New effect:-0.027690470580490477
p value:0.98
# 安慰剂:用独立的随机变量代替真实的干预变量,如果假设是正确的,则估计值应接近零
refutel = model.refute_estimate(ie, estimate, "placebo_treatment_refuter")
print(refutel)
Refute: Use a Placebo Treatment
Estimated effect:-0.028495525240213704
New effect:0.0006977458004958939
p value:0.98

基于上述的反驳,即稳健检验。表明High_limit与Churn具有因果关系

总结

和上期一样,这里的分享也权当一种冷门数据分析方法的科普,如果想深入了解的同学可自行查找资源进行充电。因果推断算的上一门高深的专业知识了,我本人也只是了解了些皮毛,如果在后续工作中有较深层次的理解后,再进行补充分享吧。也欢迎该领域的大佬慷慨分享~

共勉~

http://www.lryc.cn/news/153636.html

相关文章:

  • 探索隧道ip如何助力爬虫应用
  • 题目:2629.复合函数
  • 【实训项目】精点考研
  • 软件测试Pytest实现接口自动化应该如何在用例执行后打印日志到日志目录生成日志文件?
  • 深入理解作用域、作用域链和闭包
  • 7款适合3D建模和渲染的GPU推荐
  • 边缘计算物联网网关在机械加工行业的应用及作用分享
  • (笔记六)利用opencv进行图像滤波
  • WPF C# .NET7 基础学习
  • QT里使用sqlite的问题,好多坑
  • openGauss学习笔记-59 openGauss 数据库管理-相关概念介绍
  • Nginx安装与部署
  • Linux中Tomcat发布war包后无法正常访问非静态资源
  • 大数据、AI和云原生:引领未来软件开发的技术演进
  • Text-to-SQL小白入门(四)指令进化大模型WizardLM
  • 浅谈红队资产信息收集经验
  • list根据对象中某个字段属性去重Java流实现
  • 软件架构设计(三) B/S架构风格-层次架构(一)
  • 大端字节和小端字节
  • (10)(10.8) 固件下载
  • vue实现列表自动滚动效果
  • 如何通过构建遥感光谱反射信号与地表参数之间的关系模型来准确估算植被参数?植被参数光学遥感反演方法(Python)及遥感与生态模型数据同化算法
  • 持续集成与持续交付(CI/CD):探讨在云计算中实现快速软件交付的最佳实践
  • 【LeetCode题目详解】第九章 动态规划part02 62.不同路径 63. 不同路径 II day39补
  • 四维轻云助力在线管理、展示及分享多种地理空间数据
  • CMake 学习笔记
  • docker高级(DockerFile解析)
  • 抽象类实现接口的意义
  • 什么是接口测试,如何做接口测试?
  • Keil 编译 Debug