当前位置: 首页 > news >正文

Truncation Sampling as Language Model Desmoothing

本文是LLM系列文章,针对《Truncation Sampling as Language Model Desmoothing》的翻译。

截断采样作为语言模型的去平滑性

  • 摘要
  • 1 引言
  • 2 背景
  • 3 截断作为去平滑性
  • 4 方法
  • 5 实验与结果
  • 6 相关工作
  • 7 结论
  • 8 不足

摘要

来自神经语言模型的长文本样本可能质量较差。截断采样算法(如top-p或top-k)通过在每一步将一些单词的概率设置为零来解决这一问题。这项工作为截断的目的提供了框架,并为此目的提供了一种改进的算法。我们建议将神经语言模型视为真实分布和平滑分布的混合体,以避免无限的困惑。在这种情况下,截断算法的目的是执行去平滑,估计真实分布的支持子集。找到一个好的子集至关重要:我们表明,top-p不必要地截断了高概率单词,例如,对于以Donald开头的文档,导致它截断了除Trump之外的所有单词。我们引入了 η \eta η采样,它在熵相关概率阈值以下截断单词。与以前的算法相比, η \eta η采样根据人类生成了更可信的长英文文档,更善于打破重复,并且在一组测试分布上表现得更合理。

1 引言

2 背景

3 截断作为去平滑性

4 方法

5 实验与结果

6 相关工作

7 结论

我们已经将这类截断采样算法定义为执行去平滑,这一见解引出了如何进行截断以恢复训练分布的原则,一种新的截断采样算法,以及显示现有算法缺陷的评估。我们发现top-p解码过度截断下熵分布的趋势特别令人惊讶。我们的目标是获得这些见解和我们使用的评估,以推动进一步的研究,了解和改进我们如何从神经语言模型中生成。

8 不足

通过我们所做的分析,我们认为很难理解截断采样算法(包括我们的算法)所具有的所有序列级影响:我们不允许使用什么类型的序列?哪些类型或来源的语言(在不知不觉中)被禁止?除此之外,我们只在英语模型上测试了我们的算法;形态丰富的语言的条件分布可能具有不同的性质(尤其是子词模型)。

http://www.lryc.cn/news/152794.html

相关文章:

  • docker安装jenkins
  • 学习pytorch8 土堆说卷积操作
  • pytest自动化测试两种执行环境切换的解决方案
  • 说说TIME_WAIT和CLOSE_WAIT区别
  • Docker的优势
  • C++——string使用
  • 10. selenium API (二)
  • [国产MCU]-W801开发实例-用户报文协议(UDP)数据接收和发送
  • JavaScript 生成 16: 9 宽高比
  • HTML5之drawImage函数
  • leetcode7.整数反转-Java
  • 操作系统备考学习 day2 (1.3.2 - 1.6)
  • Django-跨域
  • wireshark抓包体验
  • Prometheus+grafana安装配置
  • 长连接和短连接有什么区别?
  • Qt应用开发(基础篇)——输入对话框 QInputDialog
  • C++ struct 笔记(超级详细)
  • Vue基础1:生命周期汇总(vue2)
  • Linux串口驱动
  • java反编译工具jd-gui使用
  • Linux 之 shell 脚本
  • 如何去阅读开源的第三方库的源码
  • 浅析Linux虚拟网络技术
  • 设计模式之九:迭代器与组合模式
  • 官方推荐:6种Pandas读取Excel的方法
  • Redis与Mysql区别
  • Black-Box Tuning for Language-Model-as-a-Service
  • 通用的ARM64架构镜像
  • git大文件推送报错