当前位置: 首页 > news >正文

games101作业1

题目

给定三维下三个点 v0(2.0, 0.0, −2.0), v1(0.0, 2.0, −2.0), v2(−2.0, 0.0, −2.0), 你需要将这三个点的坐标变换为屏幕坐标并在屏幕上绘制出对应的线框三角形 (在代码框架中,我们已经提供了 draw_triangle 函数,所以你只需要去构建变换矩阵即可)。简而言之,我们需要进行模型、视图、投影、视口等变换来将三角形显示在屏幕上。在提供的代码框架中,我们留下了模型变换和投影变换的部分给你去完成。

题解

本次作业需要实现代码框架中的两个接口:

Eigen::Matrix4f get_model_matrix(float rotation_angle);
Eigen::Matrix4f get_projection_matrix(float eye_fov, float aspect_ratio,float zNear, float zFar);

1. 旋转

第一个接口相对比较简单,直接返回旋转矩阵即可。注意:需要将角度转为弧度。
绕Z轴旋转矩阵如下:
R z ( α ) = ( cos ⁡ α − sin ⁡ α 0 0 sin ⁡ α cos ⁡ α 0 0 0 0 1 0 0 0 0 1 ) \mathbf{R}_z(\alpha)=\left(\begin{array}{cccc} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) Rz(α)= cosαsinα00sinαcosα0000100001
课程中还讲到了绕X 轴的旋转矩阵
R x ( α ) = ( 1 0 0 0 0 cos ⁡ α − sin ⁡ α 0 0 sin ⁡ α cos ⁡ α 0 0 0 0 1 ) \mathbf{R}_x(\alpha)=\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) Rx(α)= 10000cosαsinα00sinαcosα00001
绕Y轴的旋转矩阵( 注意这里的sin符号和其他两种情况不同,是因为右手坐标系,从+x->+z旋转,Y轴和拇指方向相反)
R y ( α ) = ( cos ⁡ α 0 sin ⁡ α 0 0 1 0 0 − sin ⁡ α 0 cos ⁡ α 0 0 0 0 1 ) \mathbf{R}_y(\alpha)=\left(\begin{array}{cccc} \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) Ry(α)= cosα0sinα00100sinα0cosα00001
角度转为弧度:
α = θ π 180 \alpha=\theta \frac{\pi}{180} α=θ180π

2. 正交投影

根据课程中的推导过程:其中 z ∈ [ − 1 , 1 ] z \in[-1,1] z[1,1],采用右手坐标系。观察变换完成后,将物体投影到相机坐标系中。然后在相机坐标系中进行投影变换:正交投影或者透视投影。正交投影的基本思想是:将长方体视窗体平移到原点,然后进行缩放,使得: x , y , z ∈ [ − 1 , 1 ] x,y,z \in[-1,1] x,y,z[1,1]
假设长方体视窗体的左右上下前后六个面的坐标分别为: l , r , t , b , n , f l,r,t,b,n,f l,r,t,b,n,f. 正交投影矩阵如下:
M ortho  = [ 2 r − l 0 0 0 0 2 t − b 0 0 0 0 2 n − f 0 0 0 0 1 ] [ 1 0 0 − r + l 2 0 1 0 − t + b 2 0 0 1 − n + f 2 0 0 0 1 ] = [ 2 r − l 0 0 − r + l r − l 0 2 t − b 0 − t + b t − b 0 0 2 n − f − n + f n − f 0 0 0 1 ] M_{\text {ortho }}=\left[\begin{array}{cccc} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{n-f} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]\left[\begin{array}{cccc} 1 & 0 & 0 & -\frac{r+l}{2} \\ 0 & 1 & 0 & -\frac{t+b}{2} \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{cccc} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{array}\right] Mortho = rl20000tb20000nf200001 1000010000102r+l2t+b2n+f1 = rl20000tb20000nf20rlr+ltbt+bnfn+f1

3.透视投影

透视投影可以看作是将视锥体的大端进行压缩成长方体视窗体。透视投影矩阵可以写成如下形式:
M persp  = M ortho  M persp  → ortho  M_{\text {persp }}=M_{\text {ortho }} M_{\text {persp } \rightarrow \text { ortho }} Mpersp =Mortho Mpersp  ortho 
压缩过程需要满足以下两个条件:
1.所有近平面的坐标不发生改变
2.远平面的z坐标不发生改变。
教程中根据上述条件可以推出
M persp  → ortho  = ( n 0 0 0 0 n 0 0 0 0 n + f − n f 0 0 1 0 ) M_{\text {persp } \rightarrow \text { ortho }}=\left(\begin{array}{cccc} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -nf \\ 0 & 0 & 1 & 0 \end{array}\right) Mpersp  ortho = n0000n0000n+f100nf0
所以投影矩阵如下:
M persp  = M ortho  M persp  → ortho  = [ 2 r − l 0 0 − r + l r − l 0 2 t − b 0 − t + b t − b 0 0 2 n − f − n + f n − f 0 0 0 1 ] [ n 0 0 0 0 n 0 0 0 0 n + f − n f 0 0 1 0 ] = [ 2 n r − l 0 r + l l − r 0 0 2 n t − b t + b b − t 0 0 0 n + f n − f − 2 n f n − f 0 0 1 0 ] M_{\text {persp }}=M_{\text {ortho }} M_{\text {persp } \rightarrow \text { ortho }}= \left[\begin{array}{cccc} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{array}\right] \left[\begin{array}{cccc} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -nf \\ 0 & 0 & 1 & 0 \end{array}\right]= \left[\begin{array}{cccc} \frac{2n}{r-l} & 0 & \frac{r+l}{l-r} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{b-t} & 0 \\ 0 & 0 & \frac{n+f}{n-f} & -\frac{2nf}{n-f} \\ 0 & 0 & 1 & 0 \end{array}\right] Mpersp =Mortho Mpersp  ortho = rl20000tb20000nf20rlr+ltbt+bnfn+f1 n0000n0000n+f100nf0 = rl2n0000tb2n00lrr+lbtt+bnfn+f100nf2nf0
此时投影矩阵就算推导完毕,但是投影接口的参数是:张角 f o v fov fov,纵横比 a s p e c t aspect aspect,近平面到原点的距离 n e a r near near,远平面到原点的距离 f a r far far
下面将矩阵中的参数都转为接口中的入参:
一般情况下,长方体视窗体是轴对称,故有 l = − r , b = − t l=-r,b=-t l=r,b=t,由于从原点看向 − z -z z方向看去,所以 n = − n e a r , f = − f a r n=-near,f=-far n=near,f=far
w = r − l , h = t − b , t a n ( f o v 2 ) = h / 2 n e a r , a s p e c t = w h , w=r-l,\\ h=t-b,\\ tan(\frac{fov}{2})=\frac{h/2}{near},aspect=\frac{w}{h}, w=rl,h=tb,tan(2fov)=nearh/2,aspect=hw,

h = 2 ∗ n e a r ∗ t a n ( f o v 2 ) w = h ∗ a s p e c t = 2 ∗ n e a r ∗ t a n ( f o v 2 ) ∗ a s p e c t h=2*near *tan(\frac{fov}{2})\\ w=h*aspect=2*near *tan(\frac{fov}{2})*aspect h=2neartan(2fov)w=haspect=2neartan(2fov)aspect
化简后
M persp  = [ − 1 a s p e c t ∗ t a n ( f o v 2 ) 0 0 0 0 − 1 t a n ( f o v 2 ) 0 0 0 0 n e a r + f a r n e a r − f a r 2 ∗ n e a r ∗ f a r n e a r − f a r 0 0 1 0 ] M_{\text {persp }}=\left[\begin{array}{cccc} -\frac{1}{aspect*tan(\frac{fov}{2})} & 0 & 0 & 0 \\ 0 & -\frac{1}{tan(\frac{fov}{2})} & 0 & 0 \\ 0 & 0 & \frac{near+far}{near-far} & \frac{2*near*far}{near-far} \\ 0 & 0 & 1 & 0 \end{array}\right] Mpersp = aspecttan(2fov)10000tan(2fov)10000nearfarnear+far100nearfar2nearfar0
这个结果和glm库中实现不同

	template<typename T>GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> perspectiveRH_NO(T fovy, T aspect, T zNear, T zFar){assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));T const tanHalfFovy = tan(fovy / static_cast<T>(2));mat<4, 4, T, defaultp> Result(static_cast<T>(0));Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);Result[1][1] = static_cast<T>(1) / (tanHalfFovy);Result[2][2] = - (zFar + zNear) / (zFar - zNear);Result[2][3] = - static_cast<T>(1);Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);return Result;}

都是右手坐标系,为什么不同呢?博客对此进行了解释。主要由于glm 是基于 n , f n,f n,f都是正值进行推导的,同时,glm的透视投影中还进行了NDC坐标转换,而NDC坐标系是左手坐标系。
完整代码如下:

constexpr double MY_PI = 3.1415926;inline double DEG2RAD(double deg) { return deg * MY_PI / 180; }
Eigen::Matrix4f get_model_matrix(float rotation_angle)
{Eigen::Matrix4f model = Eigen::Matrix4f::Identity();double rad = DEG2RAD(rotation_angle);model << cos(rad), -sin(rad), 0, 0,sin(rad), cos(rad), 0, 0,0, 0, 1, 0,0, 0, 0, 1;return model;
}Eigen::Matrix4f get_projection_matrix(float eye_fov, float aspect_ratio,float zNear, float zFar)
{Eigen::Matrix4f projection = Eigen::Matrix4f::Identity();double rad = DEG2RAD(eye_fov/2);projection << -1/(aspect_ratio * tan(rad)),0, 0, 0,0, -1/tan(rad), 0, 0,0, 0, (zNear+zFar) /(zNear - zFar), 2*zNear*zFar/(zNear - zFar),0, 0, 1, 0;return projection;
}

参考文献
OpenGL NDC 左手还是右手?
Games101中的透视矩阵和glm::perspective的关系

http://www.lryc.cn/news/151492.html

相关文章:

  • LeetCode 面试题 02.08. 环路检测
  • 【Linux】线程安全-生产者消费者模型
  • 优化(2) 2023/09/03
  • Swap and Reverse 题解
  • 单元测试:优雅编写Kotlin单元测试
  • 深度学习入门教学——卷积神经网络CNN
  • 【MySQL】MySQL系统变量(system variables)列表(mysqld --verbose --help的结果例)
  • Python学习之四 数据输入与输出
  • VBA技术资料MF51:VBA_在Excel中突出显示唯一值
  • Mqtt学习笔记--交叉编译移植(1)
  • Gateway的服务网关
  • 信息化发展18
  • TypeScript学习 + 贪吃蛇项目
  • YOLO-NAS详细教程-介绍如何进行物体检测
  • 容器没有命令时,如何查看进程、容器executable file not found in $PATH: unknown
  • 如何使用 Amazon EMR 在 Amazon EKS 上构建可靠、高效、用户友好的 Spark 平台
  • 国产IDE如何获得捐赠和风险投资
  • 【数学建模】清风数模正课5 相关性分析
  • Java设计模式:一、六大设计原则-03:里氏替换原则
  • jmeter 固定定时器
  • 【微服务部署】07-调用链追踪
  • 【C++入门】命名空间、缺省参数、函数重载、引用、内联函数
  • c++ 学习之 构造函数的使用规则
  • C++操作符重载的注意事项
  • 10 | Spark 查找每个单词的最大行号
  • CRE66365
  • React hook 10种常见 Hook
  • 图文详解PhPStudy安装教程
  • stable diffusion实践操作-hypernetworks
  • Win10搭建VisualSvn Server