当前位置: 首页 > news >正文

数据分析基础-数据可视化07-用数据分析讲故事

· 如何构建⼀个引⼈⼊胜的故事?

⾸先:要想象什么?
· 可视化什么⽐如何可视化更重要
· 统计分析:GIGO(垃圾输⼊,垃圾输出)
· 在可视化分析环境中:
吉⾼ → 您⽆法从可视化的不适当数据中获得太多信息。
· 因此,⽬标是:“垃圾,⾦⼦出去”

下⼀篇:你为什么要想象?

两个主要原因:
· 理解/解释数据
· 组织/整理数据并解释数据的趋势/特征
· 不得煽动观众。
· 让数据说话。
· 获得新的假设/⻅解
· 使⽤可视化来帮助获得新的假设
· 让⽤⼾从不同的⻆度查看数据。

然后:设置 KGI 和 KPI

⼀旦您决定了可视化的⽬标对象/概念:
· 需要设定KGI(关键⽬标指标)和KPI(关键绩效指标)。
· 凯基证券将定量评估要可视化的对象/概念
· KPI 源⾃KGI,描述了实现KGI 需要做什么。
· 例如,EC 站点销售额的增加
· 凯基证券:增加销售额,
· KPI:客⼾数量、每个客⼾的价格、客⼾持续性等。

关键绩效指标详情

· ⽰例:Web 服务
· 典型KPI之⼀:客⼾持久性
· 您将如何确定“客⼾忠诚度”的适当定义?
· 5 天/周?、每天?、1 天/⽉(对于昂贵的物品)?
· 持久性的定义是否适合您的 Web 服务类型?
· 还有其他例⼦吗?
· 与健康有关?

造型

建模中不同类型的变量

· ⽬标变量:使⽤模型解释的变量
· 销售瓶装⽔
· 解释变量:解释⽬标变量的变量
· 温度、价格、季节
· ⼯具/操纵变量:解释变量,其值可以控制(更改)。
· 价格

选择变量

· 区分⼯具变量和⾮⼯具变量很重要
· 温度每升⾼ 1 度,WB 销售额就会增加 7%
· 但是,您⽆法操纵温度……使⽤此解释变量来有意增加销量没有⽤处。
· W.Bs 的价格可以被操纵。
· 选择适当的解释变量对于通过交互式可视化创建和探索数据空间⾮常重
要。

选择 KPI

⽰例:EC位点分析

关键绩效指标
唯⼀⽤⼾ (UU) 注册的唯⼀⽤⼾
每⽇活跃⽤⼾ (DAU) 每天登录的唯⼀⽤⼾数
每⽉活跃⽤⼾ (MAU) 每⽉⾄少使⽤该服务⼀次的唯⼀⽤⼾
购买⽤⼾ (PU) 购买过的唯⼀⽤⼾
每⽤⼾平均收⼊ (ARPU) 销售额/⽇活跃⽤⼾数
每个购买⽤⼾的平均收⼊ (ARPPU) 销售/PU
坚持 在指定时间段内使⽤该服务的唯⼀⽤⼾
转换率 成功参与/购买特定促销/⽬标商品的唯⼀⽤⼾
活跃⽐率 DAU / 会员总数
提取 退出的唯⼀⾝份⽤⼾
点击次数 ⼴告点击次数
⻚⾯预览 访问某些⻚⾯的数量
每次⾏动成本 获取⼀名⽤⼾的成本(营销活动成本/您获取的⽤⼾数量)

KPI 应该… - 第⼀部分

· 与凯基证券直接相关
· 蝴蝶效应 :
“巴西蝴蝶翅膀的扇动是否会在德克萨斯州引发⻰卷⻛?“——爱德华·诺顿·洛伦兹
(1972)
· 对于KPI值的变化,关联唯⼀的解释
· ARPU(每⽤⼾平均收⼊):销售额/DAU(每⽇活跃⽤⼾)
· 如果 ARPU 下降,是因为
· 总购买量减少了?
· DAU 因某些促销活动⽽激增?

KPI 应该… - 第⼆部分

· 从最低必要性开始
· 不要增加 KPI 数量(可视化变量)
· ⽤⼾当时只能理解少量的视觉变量
· 例如,如果“销售额”是 KGI,则您只需要 DAU、ARPPU 和转化率

KPI 应该… - 第三部分

· 明确规定
· “⻚⾯浏览量”是⼀个好的 KPI 吗?
· ⻚⾯查看:显⽰⻚⾯时增加计数
· 弹出窗⼝怎么样?
· ⻓⻚怎么样
· 您可能需要记录适当的⽤⼾活动⽇志
· 您会使⽤什么类型的信息来代替⻚⾯视图?

KPI 应该… - 第四部分

· 根据数据类型分类
· 回到
· 定性
· 定量
· 绝对的
· 序数
· 间隔(可以+/-)
· ⽐率(可以做+、-、*、/)

根据数据类型对 KPI 进⾏分类

例⼦
· USS 分数(学习调查单元)
(1) ⾮常不同意 (2) 不同意 (3) 中性 (4) 同意 (5) ⾮常同意
· USS 平均得分为
· ⼤学为 3.2
· X 学院为 3.4
· 研究 Y 的单位为 4.2

  • 会出现什么问题?
  • 适当的⽤途是什么?
  • 我们应该展⽰什么?

关键绩效指标导出

⽅法

如果您的原始数据集中没有适当的 KPI 数据,
请考虑通过以下⽅式使⽤现有数据导出它们:
如果你不这样做
找到关键绩效指标,
建造它们!

· 合并数据

合并数据
合并多个数据以创建新的 KPI
· BMI = 体重/(⾝⾼^2)

转换数据

· 转换数据
· 使⽤⽐较指标
· 使⽤汇总统计数据
· 公制转换
· 费⽤:$ -> ⾼/中/低
· 维度较少的数据
· ⽐率(占总数的百分⽐)
· 问题?(胜率、击杀死亡率)
· 标准化
· 标准分数:将分布拟合为(平均:50,标准:10)

使⽤⽐较指标——第⼀部分

例⼦
· 上半场:服务 A 有 100,000 UU,服务 B 有 10,000 UU
· 下半场:服务 A 有 110,000 UU,服务 B 有 15,000 UU
指标
· 差异:服务 A 增加了 10K UU,服务 B 增加了 5K UU
· ⽐率:服务A 的UU 增加10%,服务B 的UU 增加50%

  • 哪⼀种更适合衡量影响⼒?
  • 哪⼀种更适合衡量增⻓?

使⽤⽐较指标——第⼆部分

· 与不同⽬标进⾏⽐较:
· 许多孩⼦使⽤服务“X”,因此应该定制服务“X”以适合孩⼦。
· 我们是否应该检查其他年龄段的⽐例?
· 您可能会发现>65 岁的年龄组可能具有相似的⽐例……。这是什么意思?
· 相同⽬标类型的时间⽐较:
· 绝对值
· 指数:上个⽉销量为100,本⽉销量为120,指数=1.2
· 变化:120 ‒ 100 = 20。
· 变化率:20 / 100 = 0.2

使⽤⽐较指标 - 第三部分

· 不同⽬标类型的时间⽐较:
· ⼯会就加薪进⾏谈判
· 公司年利润增加
· ⼯资增加

  • 公司将使⽤什么 KPI 来避免⼯资上涨?
  • ⼯会应该使⽤什么 KPI 来说服加薪?

使⽤汇总统计数据

· 平均的
· 中位数
· 最常⻅的值

概括

· 根据您的⽬标确定/选择 KGI/KPI
· 了解为什么要可视化某些类型的数据
· 了解为什么要使⽤某些视觉变量/⽅法

http://www.lryc.cn/news/151232.html

相关文章:

  • 策略模式简介
  • 学术加油站|基于端到端性能的学习型基数估计器综合测评
  • MySQL 使用规范 —— 如何建好字段和索引
  • Relation Extraction as Open-book Examination: Retrieval-enhanced Prompt Tuning
  • FFmpeg报错:Connection to tcp://XXX?timeout=XXX failed: Connection timed out
  • iOS开发Swift-7-得分,问题序号,约束对象,提示框,类方法与静态方法-趣味问答App
  • AUTOSAR规范与ECU软件开发(实践篇)7.10MCAL模块配置方法及常用接口函数介绍之Base与Resource的配置
  • Android11编译第二弹:USB连接MTP模式+USB调试+USB信任
  • Unity ShaderGraph教程——基础shader
  • 第 3 章 栈和队列(单链队列)
  • 【DFS】1254. 统计封闭岛屿的数目
  • C#--sugarClient使用之ColumnName
  • 深度学习-4-二维目标检测-YOLOv5源码测试与训练
  • 找不到msvcp140.dll的解决方法【msvcp140.dll修复工具下载】
  • 内网隧道代理技术(二十)之 CS使用HTTP代理上线不出网机器
  • 安卓 tcp 客户端
  • flutter plugins插件【三】【Flutter Intl】
  • 简单了解ICMP协议
  • MVCC究竟是什么?
  • Kafka知识点总结
  • K8s最基本概念
  • vulnhub渗透测试靶场练习2
  • 在R中安装TensorFlow、TensorFlow_Probability、numpy(R与Python系列第二篇)
  • 十大管理——项目成本管理
  • Java BIO、NIO、AIO学习总结
  • sql各种注入案例
  • 系统学习Linux-ELK日志收集系统
  • IDEA2023隐藏.idea和.iml文件
  • 【深入浅出C#】章节 9: C#高级主题:反射和动态编程
  • Gorm简单了解