当前位置: 首页 > news >正文

线性代数的学习和整理17:向量空间的基,自然基,基变换等(未完成)

目录

 3 向量空间的基:矩阵的基础/轴

3.1 从颜色RGB说起

3.2  附属知识

3.3 什么样的向量可以做基?

3.4 基的分类

3.1.1 不同空间的基---向量组的数量可能不同

3.1.2 自然基

3.1.3 正交基

3.1.4 标准正交基

3.1.5 基和向量/矩阵

3.1.6 基变换

(1)基不变,坐标变换 

(2)坐标不变,基变换

3.1.6 基变换和坐标变换的公式 (待完成)


基的英语

 3 向量空间的基:矩阵的基础/轴

3.1 从颜色RGB说起

  • RGB颜色大家都明白原理
  • 实际上就是 red, green,blue 这3元色来生成其他颜色
  • RGB颜色有2种数字化 表示方式
  1. 比如 ffffff 000000 ,这个是16进制数字来表示颜色
  2. 使用RGB的向量值来表示其他颜色的,比如 黑色是(0,0,0) ,白色是(255,255,255), 而后面这种方法,就是向量和矩阵的方法
  3. 实际上 RGB 是三原色,也就是 颜色空间/ 可以看成一个3维空间的基
  4. 其中 red 是\begin{bmatrix} 255\\ 0\\ 0 \end{bmatrix} green 是 \begin{bmatrix} 0\\ 255\\ 0 \end{bmatrix}  ,blue是 \begin{bmatrix} 0\\ 0\\ 255 \end{bmatrix}
  5. 任意一种颜色都可以写成 color=k1*\begin{bmatrix} 255\\ 0\\ 0 \end{bmatrix} + k2*\begin{bmatrix} 0\\ 255\\ 0 \end{bmatrix} + k3*\begin{bmatrix} 0\\ 0\\ 255 \end{bmatrix}

3.2  附属知识

1 十六进制

(常用数字0、1、2、3、4、5、6、7、8、9和字母A、B、C、D、E、F(a、b、c、d、e、f)表示,其中:A~F表示10~15,这些称作十六进制数字。)

2 颜色的RGB值

  • RGB值从0-255,实际这个数字代表亮度
  • 总共有256*256*256种,

颜色名称

红色值 Red

绿色值 Green

蓝色值 Blue

黑色

0

0

0

蓝色

0

0

255

绿色

0

255

0

青色

0

255

255

红色

255

0

0

亮紫色(洋红色)

255

0

255

黄色

255

255

0

白色

255

255

255

3.3 什么样的向量可以做基?

向量空间的基的严格定义:向量空间中的某组向量 A= {a1,a2.....an} ,这些向量如果是这个向量空间的最大线性无关组,那么这组向量A就是这个空间的一组基。

总结可以做基的特征

A= {a1,a2.....an} 这组向量,或这个向量组

  • 必须是线性无关的。
  • 而且必须是这个空间的最大线性无关组。

理论上,颜色空间的基有无数组,但是很多向量组也不能作为基本

举例

  1. 比如RG这2种颜色构成的向量组,不能称为RGB空间的一组基,因为RG组成不了所有颜色
  2. 比如线性相关的3组向量: 深绿色(0,255,0),标准绿色(0,100,0) 和蓝色(0,0,255)不能作为颜色空间的基的,因为3个线性相关的颜色基,无法组成所有颜色。

3.4 基的分类

3.1.1 不同空间的基---向量组的数量可能不同

  • (a1,a2)是2维的,对应2个基底e1,e2
  • (a1,a2,a3)是3维的,对应3个基底e1,e2
  • (a1,a2,a3... ... an)是n维的, 对应n个基底e1,e2.....en

3.1.2 自然基

  • 自然基本特指这种    \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} , \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} , \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}
  • 自然基,比然是正交基,也是标准正交基

3.1.3 正交基

  • 基这组向量里的每个向量都是互相 垂直/正交的

3.1.4 标准正交基

  • 基这组向量里的每个向量都是互相 垂直/正交的
  • 且长度都为1
  • 标准正交基有很多,并不只是只有自然基那一组!

3.1.5 基和向量/矩阵

  • 比如一个向量(3,2,5) 就可以认为是,这个向量的3个元素分别在3个基上的长度/伸缩度
  1. 向量(3,2,5) 在第1个基,(1,0,0) 上的长度/伸缩度是3,
  2. 向量(3,2,5) 在第2个基,(0,1,0) 上的长度/伸缩度是2,
  3. 向量(3,2,5) 在第3个基,(0,0,1) 上的长度/伸缩度是5,

3.1.6 基变换

  • 矩阵的 基 / 基底 是可以改变的
  • 实际上Ax=y 就可以看作 基变换
  • Ax=y 有两种方法,要么坐标变,要么坐标不变,基变化

(1)基不变,坐标变换 

  • 假设我们有A是e1,e2,e3 等 自然基下的向量x
  • 计算  A*x=y
  • 一般我们计算  A*x=y 其实都是将 向量x 经过矩阵A变换后,生成了新的向量y,而新的向量y实际就是原向量的坐标发生了变化,其仍然是e1,e2。。。等 自然基下的向量y

(2)坐标不变,基变换

  • 假设我们有A是e1,e2。。。等自然基下的向量x
  • 而A的列向量分别是  α1,α2 ....
  • 计算  A*x=y
  • 我们可以保持x向量的坐标还是老的,但是基不再用e1,e2。。。等,而是用A的列向量α1,α2 ....作为新的基.

3.1.6 基变换和坐标变换的公式 (待完成)

http://www.lryc.cn/news/150307.html

相关文章:

  • Java中支持分库分表的框架/组件/中间件简介
  • 7.2 项目2 学生通讯录管理:文本文件增删改查(C 版本)(自顶向下设计+断点调试) (A)
  • excel怎么设置任意选一个单元格纵横竖横都有颜色
  • 期货-股票交易规则
  • Makefile一些语法
  • 0基础可以转行编程行业么
  • 【spark】dataframe慎用limit
  • 基于OpenCV+LPR模型端对端智能车牌识别——深度学习和目标检测算法应用(含Python+Andriod全部工程源码)+CCPD数据集
  • C++学习6
  • bazel使用中存在的问题
  • svn软连接和文件忽略
  • 自动驾驶攻城战,华为小鹏先亮剑
  • 企业供应链数字化怎么做?企业数字化供应链流程落地方式
  • java八股文面试[多线程]——synchronized 和lock的区别
  • 实现一个简单的控制台版用户登陆程序, 程序启动提示用户输入用户名密码. 如果用户名密码出错, 使用自定义异常的方式来处理
  • Java 大厂八股文面试专题-设计模式 工厂方法模式、策略模式、责任链模式
  • Anaconda Prompt输入jupyter lab无反应
  • JavaScript Web APIs - 05 Window对象 、本地存储
  • Ansible学习笔记6
  • Linux挖矿程序清除
  • 使用Git和Github上传代码文件
  • OpenAI发布ChatGPT企业级版本
  • vue3中axios的使用方法
  • 【docker】容器的运行、停止、查看等基本操作
  • Python|OpenCV-鼠标自动绘制图像(4)
  • IDEA 设置提示信息
  • 清理docker镜像方法
  • windows 搭建 swoole开发环境(官网已支持)
  • matlab的基本使用
  • hznuoj---python查找最大字母