当前位置: 首页 > news >正文

LM-INFINITE: SIMPLE ON-THE-FLY LENGTH GENERALIZATION FOR LARGE LANGUAGE MODELS

本文是LLM系列文章,针对《LM-INFINITE: SIMPLE ON-THE-FLY LENGTH GENERALIZATION FOR LARGE LANGUAGE MODELS》的翻译。

LM-INFiNITE:大语言模型的一个简单长度上推广

  • 摘要
  • 1 引言
  • 2 相关工作
  • 3 LLMs中OOD因素的诊断
  • 4 LM-INFINITE
  • 5 评估
  • 6 结论和未来工作

摘要

近年来,基于Transformer的大型语言模型(LLM)在各个领域的性能都有了显著的进步。随着这些LLM被部署用于越来越复杂的任务,它们通常需要进行更长的推理过程或理解更大的上下文。在这些情况下,LLM在长序列上的长度泛化失败变得更加突出。大多数预训练方案将训练序列截断为固定长度(例如对于LLaMa为2048)。LLM通常很难在较长的上下文后生成流畅的文本,更不用说执行下游任务了,即使是为了解决这个问题而设计的相对位置编码。常见的解决方案,如在较长的语料库上进行微调,通常涉及令人生畏的硬件和时间成本,并且需要仔细的训练过程设计。为了更有效地利用现有LLM的生成能力,我们从理论和实证上研究了导致这一问题的主要分布外(OOD)因素。受此诊断的启发,我们提出了一种简单而有效的飞行长度泛化解决方案LM Infinite,它只涉及 Λ \Lambda Λ形注意力掩码和距离限制,而不需要参数更新或学习。我们发现它适用于使用相对位置编码方法的各种LLM。LM Infinite在 O ( n ) \mathcal{O}(n) O(n)时间和空间上具有计算效率,并在ArXiv和OpenWebText2数据集上对多达32k个token表现出一致的流畅性和生成质量,解码速度提高了2.72倍。在诸如密钥检索之类的下游任务中,它继续处理比普通模型立即失败的训练长度长得多的输入。

1 引言

2 相关工作

3 LLMs中OOD因素的诊断

4 LM-INFINITE

5 评估

6 结论和未来工作

在本文中,我们对具有相对位置编码的基于Transformer的LLM中的长度泛化问题提供了解释和简单的即时解决方案。我们首先对可能导致长度泛化失败的OOD(分布外)因素进行理论和实证分析。基于这些直觉,我们提出了LM Infinite,一种无需任何参数更新的即插即用的治疗方法。我们的经验评估表明,我们可以让多个开源SoTA LLM保持其原始生成质量,类似于明确微调后的性能。LM Infinite还将任务求解能力扩展到比训练样本长得多的序列。未来的工作可以探索如何让LM Infinite更好地感知被掩盖的注意力区域中的信息。我们希望LM Infinite的计算效率和易用性使没有大量计算资源的研究人员也能在长序列上使用LLM。

http://www.lryc.cn/news/149653.html

相关文章:

  • ShardingSphere——压测实战
  • 二分图-染色法-dfs
  • SQL优化案例教程0基础(小白必看)
  • webpack(一)模块化
  • 基于Java+SpringBoot+Vue前后端分离人力资源管理系统设计和实现
  • 安装配置mariadb
  • Ant Design Vue 日期选择器DatePicker传给后台日期参数格式问题
  • springboot1.5.12升级至2.6.15
  • Android Event事件分发(新版本)
  • 可控生成:ControlNet原理
  • 【极客时间】MySQL 必知必会-20230901
  • 53 个 CSS 特效 3(完)
  • 简单数学题:找出最大的可达成数字
  • [C++ 网络协议] 套接字的多种可选项
  • 2022年03月 C/C++(五级)真题解析#中国电子学会#全国青少年软件编程等级考试
  • ***数据转换中常用的两个函数 sscanf,sprintf
  • 软件工程(十九) 软件测试
  • go中读写锁(rwmutex)源码解读实现原理
  • 【人工智能】—_深度优先搜索、代价一致搜索、深度有限搜索、迭代深度优先搜索、图搜索
  • uni-app 客服按钮可上下拖动动
  • 基于Android的旅游管理系统 微信小程序
  • python-数据可视化-下载数据-CSV文件格式
  • 时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测
  • leetcode 823 带因子的二叉树
  • 钉钉消息已读、未读咋实现的嘞?
  • Java 读取TIFF JPEG GIF PNG PDF
  • 研磨设计模式day14模板方法模式
  • 7 集群基本测试
  • chrono学习(一)
  • 后端面试话术集锦第 十 篇:springMVC面试话术