当前位置: 首页 > news >正文

pytorch中 nn.Conv2d的简单用法

image-20230828205225900

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,padding_mode='zeros')

参数介绍

  • in_channels:卷积层输入通道数

  • out_channels:卷积层输出通道数

  • kernel_size:卷积层的卷积核大小

  • padding:填充长度

  • stride:卷积核移动的步长

  • dilation:是否采用空洞卷积

  • groups:是否采用分组卷积

  • bias:是否添加偏置参数

  • padding_modepadding的模式

如果输入大小为:数量N即批处理大小(batch size),输入通道数C_in,输入高度H_in,输入宽度C_in。输出大小为:数量N,输出通道数C_out,输出高度H_out,输出宽度C_out。
i n p u t : ( N , C i n , H i n , W i n ) o u t p u t : ( N , C o u t , H o u t , W o u t ) input: \quad (N, C_{in},H_{in},W_{in}) \\ output: \quad (N,C_{out}, H_{out}, W_{out}) input:(N,Cin,Hin,Win)output:(N,Cout,Hout,Wout)
之间的转换为:
( N i , C o u t ) = b i a s ( C o u t ) + ∑ k = 0 C i n − 1 w e i g h t ( C o u t , k ) ∗ ( N i , k ) (N_i,C_{out}) = bias(C_{out}) + \sum_{k=0}^{C_{in}-1}weight(C_{out},k) * (N{i},k) (Ni,Cout)=bias(Cout)+k=0Cin1weight(Cout,k)(Ni,k)

H o u t = [ H i n + 2 ∗ p a d d i n g [ 0 ] − d i l a t i o n [ 0 ] ∗ ( k e r n a l s i z e [ 0 ] − 1 ) − 1 s t r i d e [ 0 ] + 1 ] H_{out} = [ \frac {H_{in} + 2 * padding[0] - dilation[0] *(kernal_size[0] - 1) - 1}{stride[0]} + 1] Hout=[stride[0]Hin+2padding[0]dilation[0](kernalsize[0]1)1+1]

W o u t = [ W i n + 2 ∗ p a d d i n g [ 1 ] − d i l a t i o n [ 1 ] ∗ ( k e r n e l s i z e [ 1 ] − 1 ) − 1 s t r i d e [ 1 ] + 1 ] W_{out} = [ \frac {W_{in} + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1} {stride[1]} + 1] Wout=[stride[1]Win+2padding[1]dilation[1](kernelsize[1]1)1+1]

对于二维简化的:
W i n , H i n 输入的宽、高 W o u t , H o u t 输出的宽,高 F 卷积核的大小 S 步长 P 边界填充 W_{in},H_{in} \quad 输入的宽、高 \\ W_{out},H_{out} \quad 输出的宽,高 \\ F \quad 卷积核的大小 \\ S \quad 步长 \\ P \quad 边界填充 Win,Hin输入的宽、高Wout,Hout输出的宽,高F卷积核的大小S步长P边界填充
那么输出的宽、高为:
W o u t = W i n − F W + 2 P S + 1 H o u t = H i n − F H + 2 P S + 1 W_{out} = \frac {W_{in} - F_{W} + 2P} S + 1 \\ H_{out} = \frac {H_{in} - F_{H} + 2P} S + 1 Wout=SWinFW+2P+1Hout=SHinFH+2P+1
在pytorch中的使用

  • 直接使用(不常见)
import torch 
import torch.nn as nn 
# https://www.bilibili.com/video/BV1644y1h7LN/?spm_id_from=333.337.search-card.all.click&vd_source=13dfbe5ed2deada83969fafa995ccff6# 输入通道数
in_channels = 1
# 输出通道数 
out_channels = 1
# 批处理大小 
batch_size = 1
# 卷积核大小 (3,3)
kernel_size = 3
# 输入规格
input_size = [batch_size, in_channels, 4, 4]# nn.Conv2d使用,其他默认值
conv_layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size)
# 随机输入特征图
input_feature_map = torch.randn(input_size)
# 打印输入特征图形状
print(input_feature_map.shape)
# 求出输出特征图
output_feature_map = conv_layer(input_feature_map)
# 打印出卷积核的规格
print(conv_layer.weight.shape)
# weight == out_channel * in_channel * height * weight
# 打印输出特征图大小
print(output_feature_map.shape)

输出:

torch.Size([1, 1, 4, 4])
torch.Size([1, 1, 3, 3])
torch.Size([1, 1, 2, 2])
  • 封装为类的形式
import torch 
from torch import nn# 定义一个同样操作的卷积类
class Foo(nn.Module):def __init__(self, in_channel, out_channel):super(Foo,self).__init__()self.layer = nn.Sequential(nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3))def forward(self, x):return self.layer(x)# 实例化一个
conv2 = Foo(1,1)
# 输出特征图, input_feature_map_2 和 input_feature_map是相同的值
output_feature_map_2 = conv2(input_feature_map_2)
print(output_feature_map_2)

输出:

tensor([[[[ 0.5144,  0.0672],[ 0.2169, -0.0591]]]], grad_fn=<ConvolutionBackward0>)

可以观察到,这两个操作相同但是结果值却不相同。这是因为虽然两者实现了相同的卷积操作,但由于它们的初始化和权重值的不同,因此输出结果可能不完全一致。 另外,对于卷积操作的结果,输出的张量形状可能会有所不同,但数值内容应该是相似的。如果希望确保两种方式得到的输出结果完全一致,可以尝试使用相同的初始化参数,并确保权重值相同。

http://www.lryc.cn/news/148638.html

相关文章:

  • 前端项目工程化之代码规范
  • MyBaits Generator
  • JavaWeb 速通Ajax
  • vscode c++编译时报错
  • 基于体系结构架构设计-架构真题(十五)
  • IPv6网络实验:地址自动生成与全球单播通信探索
  • 深入探索前端之道:JavaScript深拷贝与浅拷贝的解析与实现
  • 关于两个不同数据库的两张表建立数据库链接,关联查询数据
  • Google登录SDK
  • ASP.NET Core 8 的运行环境 Environment
  • 机械臂手眼标定ZED相机——眼在手外python、matlab
  • 前端实现动态路由(前端控制全部路由,后端返回用户角色)
  • Spring5学习笔记—Spring事务处理
  • 如何增长LLM推理token,从直觉到数学
  • 《穷爸爸与富爸爸》时间是最宝贵的资产,只有它对所有人都是公平的
  • Git结合Gitee的企业开发模拟
  • WEBGL(2):绘制单个点
  • C# task多线程创建,暂停,继续,结束使用
  • 界面控件DevExpress WinForms(v23.2)下半年发展路线图
  • vue实现按需加载的多种方式
  • el-switch组件在分页情况下的使用
  • 【100天精通python】Day49:python web编程_web框架,Flask的使用
  • sql 查重以及删除重复
  • Flux语言 -- InfluxDB笔记二
  • 18.Oauth2-微服务认证
  • vue和node使用websocket实现数据推送,实时聊天
  • 汽车电子笔记之:基于AUTOSAR的多核监控机制
  • GDB 源码分析 -- 断点源码解析
  • SpringMVC概述与简单使用
  • 传输层—UDP原理详解