当前位置: 首页 > news >正文

(动态规划) 剑指 Offer 60. n个骰子的点数 ——【Leetcode每日一题】

❓ 剑指 Offer 60. n个骰子的点数

难度:中等

n 个骰子扔在地上,所有骰子朝上一面的点数之和为 s 。输入 n,打印出s的所有可能的值出现的概率。

你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。

示例 1:

输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]

示例 2:

输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]

限制

  • 1 <= n <= 11

💡思路:动态规划

使用一个二维数组 dp 存储点数出现的次数,其中 dp[i][j] 表示前 i 个骰子产生点数 j 的次数。

只看第 n 枚骰子,它的点数可能为 1, 2, 3, ... , 6 ,因此投掷完 n 枚骰子后点数 j 出现的次数,可以由投掷完 n−1 枚骰子后,对应点数 j−1, j−2, j−3, ..., j−6 出现的次数之和转化过来。

for (第n枚骰子的点数 k = 1; k <= 6; k++) {dp[n][j] += dp[n-1][j - k]
}

写成数学公式是这样的:
d p [ n ] [ j ] = ∑ i = 1 6 d p [ n − 1 ] [ j − k ] dp[n][j]=\sum_{i=1}^6dp[n-1][j-k] dp[n][j]=i=16dp[n1][jk]
n 表示阶段,j 表示投掷完 n 枚骰子后的点数和,k 表示第 n 枚骰子会出现的六个点数。

⭐️ 空间优化: 旋转数组

观察发现每个阶段的状态都只和它前一阶段的状态有关,因此我们不需要用额外的一维来保存所有阶段。

  • 用两个一维数组交替变换存储。

🍁代码:(C++、Java)

C++

class Solution {
public:vector<double> dicesProbability(int n) {int maxsum = n * 6;vector<vector<long long>> dp(n + 1, vector<long long>(maxsum + 1));for(int i = 1; i <= 6; i++){dp[1][i] = 1;}for(int i = 2; i <= n; i++){for(int j = i; j <= i * 6; j++){for(int k = 1; k <= 6 && k <= j; k++){dp[i][j] += dp[i - 1][j - k];}}}long long totalnum = pow(6, n);vector<double> ans(n * 5 + 1);for(int i = n; i <= maxsum; i++){ans[i - n] = (double)dp[n][i] / totalnum;}return ans;}
};

⭐️ 空间优化: 旋转数组

C++

class Solution {
public:vector<double> dicesProbability(int n) {int maxsum = n * 6;vector<vector<long long>> dp(2, vector<long long>(maxsum + 1));for(int i = 1; i <= 6; i++){dp[0][i] = 1;}int flag = 1; //旋转标记for(int i = 2; i <= n; i++, flag = 1 - flag){for(int j = 0; j <= i * 6; j++){dp[flag][j] = 0; //旋转数组清零}for(int j = i; j <= i * 6; j++){for(int k = 1; k <= 6 && k < j; k++){dp[flag][j] += dp[1 - flag][j - k];}}}long long totalnum = pow(6, n);vector<double> ans(n * 5 + 1);for(int i = n; i <= maxsum; i++){ans[i - n] = (double)dp[1 - flag][i] / totalnum;}return ans;}
};

Java

class Solution {public double[] dicesProbability(int n) {int maxsum = n * 6;long[][] dp = new long[2][maxsum + 1];for(int i = 1; i <= 6; i++){dp[0][i] = 1;}int flag = 1; //旋转标记for(int i = 2; i <= n; i++, flag = 1 - flag){for(int j = 0; j <= i * 6; j++){dp[flag][j] = 0; //旋转数组清零}for(int j = i; j <= i * 6; j++){for(int k = 1; k <= 6 && k < j; k++){dp[flag][j] += dp[1 - flag][j - k];}}}double totalnum = Math.pow(6, n);double[] ans = new double[n * 5 + 1];for(int i = n; i <= maxsum; i++){ans[i - n] = dp[1 - flag][i] / totalnum;}return ans;}
}

🚀 运行结果:

在这里插入图片描述

🕔 复杂度分析:

  • 时间复杂度 O ( n 2 ) O(n^2) O(n2), 状态转移循环 n−1 轮;每轮中,当 i =2, 3, ..., n时,对应循环数量分别为 6×6, 11×6, ... , [5(n−1)+1]×6 ;因此总体复杂度为 O ( ( n − 1 ) × 6 + [ 5 ( n − 1 ) + 1 ] 2 × 6 ) O((n−1)×\frac{6+[5(n-1)+1]}2×6) O((n1)×26+[5(n1)+1]×6),即等价于 O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度 O ( n ) O(n) O(n)dp 数组需要 2*n*6的空间,所以 O ( 2 ∗ n ∗ 6 ) = O ( n ) O(2*n*6) = O(n) O(2n6)=O(n)

题目来源:力扣。

放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我LeetCode主页 / CSDN—力扣专栏,每日更新!

注: 如有不足,欢迎指正!

http://www.lryc.cn/news/145840.html

相关文章:

  • ArrayList与顺序表
  • 【【萌新的STM32-22中断概念的简单补充】】
  • Java 中数据结构HashMap的用法
  • Request对象和response对象
  • 设计模式之桥接模式
  • pom.xml配置文件失效,显示已忽略的pom.xml --- 解决方案
  • 文本编辑器Vim常用操作和技巧
  • 【算法系列篇】位运算
  • 机器学习的测试和验证(Machine Learning 研习之五)
  • RNN循环神经网络
  • 安防视频监控/视频集中存储/云存储平台EasyCVR无法播放HLS协议该如何解决?
  • Docker技术--Docker的安装
  • 客户案例|MemFire Cloud助推应急管理业务,打造百万级数据可视化大屏
  • 蒲公英路由器如何设置远程打印?
  • 国产自主可控C++工业软件可视化图形架构源码
  • 【linux命令讲解大全】022.网络管理工具和命令概述
  • 应急响应流程及思路
  • 网页自适应
  • 什么是Sui Kiosk,它可以做什么,如何赋能创作者?
  • 【MySQL】mysql connect
  • 基于 vue2 发布 npm包
  • 基于Axios完成前后端分离项目数据交互
  • 时序预测 | MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比
  • C# 生成唯一ID
  • python怎么提取视频中的音频
  • 学习设计模式之建造者模式,但是宝可梦
  • 数学建模:变异系数法
  • paddle.load与pandas.read_pickle的速度对比(分别在有gpu 何无gpu 对比)
  • 探讨uniapp的路由与页面栈及参数传递问题
  • 字节一面:你能讲一下跨域吗