当前位置: 首页 > news >正文

【详解】文本检测OCR模型的评价指标

关于文本检测OCR模型的评价指标

前言:网上关于评价标准乱七八糟的,有关于单词的,有关于段落的,似乎没见过谁解释一下常见论文中常用的评价指标具体是怎么计算的,比如DBNet,比如RCNN,这似乎好像默认大家都知道咋算了。

好吧,我不知道,我刚搞懂,做个笔记。

目录

  • 关于文本检测OCR模型的评价指标
    • 识别网络
    • 检测网络
    • 举个非常好的例子
      • 计算如下:
        • 检测算法指标计算:
        • 整体OCR系统指标计算:

识别网络

识别网络是最简单的,只有一个指标,就是准确率

检测正确的图像占总图像的比例
a c c u r a c y = 检测正确的小图数量 数据集中所有的小图数量 accuracy = \frac{检测正确的小图数量}{数据集中所有的小图数量} accuracy=数据集中所有的小图数量检测正确的小图数量

这里的图像指的是“小图”,如下所示:

请添加图片描述
请添加图片描述

识别结果就是文本,如果识别结果与标注一致,即为正样本。

检测网络

检测网络就是采用的二分类的最简单的混淆矩阵
有框没框,框的位置对不对,都需要设定阈值进行限定

在这里插入图片描述

Precision  = T P T P + F P \text { Precision }=\frac{T P}{T P+F P}  Precision =TP+FPTP
Recall  = T P T P + F N \text { Recall }=\frac{T P}{T P+F N}  Recall =TP+FNTP
F Score  = ( 1 + β 2 ) Precision  ⋅ Recall  β 2 ⋅ Precision  + Recall  ( β 系数一般取 1 ) F_{\text {Score }}=\left(1+\beta^2\right) \frac{\text { Precision } \cdot \text { Recall }}{\beta^2 \cdot \text { Precision }+ \text { Recall }} (\beta系数一般取1) FScore =(1+β2)β2 Precision + Recall  Precision  Recall β系数一般取1

两者和在一起组成OCR系统,以paddleOCR为例

官方指标评估代码与方法

PaddleOCR计算三个OCR检测相关的指标,分别是:Precision、Recall、Hmean(F-Score)。

PS:这里,Hmean与F-Score在PaddleOCR-V1中是分开的,Hmean特指检测位置部分的指标,F-Score特指OCR系统的指标,V2V3就没区分了,全部都是OCR系统的指标。

区别在于:TP的计算,OCR系统的指标需要:真实有框的位置,预测为有框,且识别结果正确。

依据论文:
在这里插入图片描述

举个非常好的例子

请添加图片描述
如上图所示:

  • 真实有框的数量为10个
  • 真实有框和预测有框对上的数量有7个:TP=7(绿蓝)
  • 但其中只有5个识别正确,所以:TP=5(红绿蓝)
  • 真实没框和预测有框的数量为2个:FP=2(纯蓝)
  • 真实有框但没有预测出来的有3个:FN=3(纯绿)

计算如下:

检测算法指标计算:

Precision  = T P T P + F P = 7 7 + 2 = 0.7778 \text { Precision }=\frac{T P}{T P+F P}=\frac{7}{7+2}=0.7778  Precision =TP+FPTP=7+27=0.7778
Recall  = T P T P + F N = 7 7 + 3 = 0.7 \text { Recall }=\frac{T P}{T P+F N}=\frac{7}{7+3}=0.7  Recall =TP+FNTP=7+37=0.7
F Score  = ( 1 + β 2 ) Precision  ⋅ Recall  β 2 ⋅ Precision  + Recall  = ( 2 ) 0.7778  ⋅ 0.7  1 ⋅ 0.7778  + 0.7  = 0.73685 F_{\text {Score }}=\left(1+\beta^2\right) \frac{\text { Precision } \cdot \text { Recall }}{\beta^2 \cdot \text { Precision }+ \text { Recall }}=\left(2\right) \frac{\text { 0.7778 } \cdot \text { 0.7 }}{1 \cdot \text { 0.7778 }+ \text {0.7 }}=0.73685 FScore =(1+β2)β2 Precision + Recall  Precision  Recall =(2)1 0.7778 +0.7  0.7778  0.7 =0.73685

整体OCR系统指标计算:

Precision  = T P T P + F P = 5 5 + 2 = 0.714 \text { Precision }=\frac{T P}{T P+F P}=\frac{5}{5+2}=0.714  Precision =TP+FPTP=5+25=0.714
Recall  = T P T P + F N = 5 5 + 3 = 0.625 \text { Recall }=\frac{T P}{T P+F N}=\frac{5}{5+3}=0.625  Recall =TP+FNTP=5+35=0.625
F Score  = ( 1 + β 2 ) Precision  ⋅ Recall  β 2 ⋅ Precision  + Recall  = ( 2 ) 0.714  ⋅ 0.625  1 ⋅ 0.714  + 0.625  = 0.66654 F_{\text {Score }}=\left(1+\beta^2\right) \frac{\text { Precision } \cdot \text { Recall }}{\beta^2 \cdot \text { Precision }+ \text { Recall }}=\left(2\right) \frac{\text { 0.714 } \cdot \text { 0.625 }}{1 \cdot \text { 0.714 }+ \text { 0.625 }}=0.66654 FScore =(1+β2)β2 Precision + Recall  Precision  Recall =(2)1 0.714 + 0.625  0.714  0.625 =0.66654

http://www.lryc.cn/news/144125.html

相关文章:

  • Python遥感图像处理应用篇038 GDAL 遥感图像特征提取(统计特征图)
  • 全局ID生成方式
  • c++之指针
  • JVM 访问对象的两种方式
  • yo!这里是Linux基础开发工具介绍
  • 本地组策略编辑器找不到怎么解决?| 解决windows home 版本隐藏本地组策略编辑器的问题 | 简单的介绍本地组策略编辑器
  • 将Spring boot 项目部署到tomcat服务艰难
  • 第十二章 ObjectScript - 命令
  • 在 CentOS 7 / RHEL 7 上安装 OpenSSL 1.1.x
  • 论文阅读_模型结构_LoRA
  • uniapp获取 pdf文件流 并展示
  • Linux(进程间通信)
  • Go的Gorm数据库操作错误WHERE conditions required
  • 基于java swing和mysql实现的仓库商品管理系统(源码+数据库+运行指导视频)
  • 6、css学习6(表格)
  • Ceph源码解析:PG peering
  • 解决jupyter notebook可以使用pytorch而Pycharm不能使用pytorch的问题
  • 对建造者模式理解
  • 回归预测 | MATLAB实现CSO-ELM布谷鸟算法优化极限学习机多输入单输出回归预测(多指标,多图)
  • 静态链接库和动态链接库的区别
  • 使用 python 源码搭建 conda 环境
  • dart 学习之 异步操作
  • 《Flink学习笔记》——第二章 Flink的安装和启动、以及应用开发和提交
  • 网易新财报:游戏稳、有道进、云音乐正爬坡
  • Docsify的评论系统gitalk配置过程
  • HarmonyOS/OpenHarmony(Stage模型)卡片开发应用上下文Context使用场景二
  • 数字货币量化交易平台
  • 2022 ICPC 济南 E Identical Parity (扩欧)
  • 【BUG事务内消息发送】事务内消息发送,事务还未结束,消息发送已被消费,查无数据怎么解决?
  • 数据分析作业四-基于用户及物品数据进行内容推荐