当前位置: 首页 > news >正文

性能优化之分库分表

1、什么是分库分表

1.1、分表

将同一个库中的一张表(比如SPU表)按某种方式(垂直拆分、水平拆分)拆分成SPU1、SPU2、SPU3、SPU4…等若干张表,如下图所示:
在这里插入图片描述

1.2、分库

在表数据不变的情况下,对数据库进行拆分,即将一个库中的若干张表按某种方式拆分出来,放到不同的数据中,如下图所示:
在这里插入图片描述

1.3、分库+分表

数据库的数量和表的数量都有变化,例如将一个数据库中的一张表(比如SPU表)拆分成SPU1、SPU2、SPU3、SPU4…等若干张表,并放到不同的数据里面,如下图所示:
在这里插入图片描述

2、拆分方式

在这里插入图片描述

2.1、水平拆分

水平拆分指的是在整个表数据结构不发生变化的前提下,我们将一张表的数据拆分成多张表,如下图所示:
在这里插入图片描述
这样拆分完以后,单张表的数据量就降下来了,读写性能自然就上去了。

2.2、垂直拆分

垂直拆分指将本来放在一张表中的字段,按业务需求拆分开放到多张表中,如下图所示:
在这里插入图片描述
这样拆分完后,就将需要经常查询的数据单独放到一张表中了,性能也就提上去了。

2、何时进行分库分表?

当系统性能出现瓶颈,我们通过代码优化、加缓存、JVM性能调优、限流、搭建集群等常用的技术手段依然无法很好的解决问题时,就可以考虑采用分库分表来提高系统的性能。常见需要进行分表分表的场景有以下几点:

2.1、单表出现性能瓶颈

单表数据量较大,导致读写性能较慢。

2.2、单库出现性能瓶颈

  1. CPU压力过大(busy、load过高),导致读写性能较慢。
  2. 内存不足(缓存池命中率较低、磁盘读写IOPS过高),导致读写性能较慢。
  3. 磁盘空间不足,导致无法正常写入数据。
  4. 网络带宽不足,导致读写性能较慢。

3、如何选择分库、分表或者分库+分表

3.1、只分表

  • 单表数据量较大,单表读写性能出现瓶颈。
  • 经过评估单库的容量和性能可以支撑未来几年的数据量增长。

3.2、只分库

  • 数据库(读)写压力较大,数据库出现存储性能瓶颈。

3.3、分库分表

  • 单表数据量较大,单表读写性能出现瓶颈。
  • 数据库(读)写压力较大,数据库出现存储性能瓶颈。

4、分库分表带来的问题

4.1、分布式唯一ID

分库分表后,一张表被拆成了多张表,数据库的自增ID无法保证数据的唯一性了,因此需要映入一种方案来保证数据ID的唯一性。成熟的解决方案有以下几个:

4.1.1、UUID

优点:本地生成,性能高。

缺点:

  • 更占用存储空间,一般为长度36的字符串。
  • 不适合作为MySQL主键:无序性会导致磁盘随机IO、叶分裂等问题;普通索引需要存储主键值,导致B+树“变高”,IO次数变多。
  • 基于MAC地址的送算法可能会导致MAC地址泄漏。

4.1.2、雪花算法

在这里插入图片描述

  • 41bit时间戳:可用69年
  • 10bit工作机器:可部署1024台服务器
  • 12bit序列号:每毫秒可生成4096个ID,每秒也就是409万。

4.1.3、号段模式

在这里插入图片描述

4.2、分布式事务

4.2.1、2PC

2PC 即两阶段提交协议,是将整个事务流程分为两个阶段,准备阶段(Prepare phase)、提交阶段(commit phase),2 是指两个阶段,P 是指准备阶段,C 是指提交阶段。
在这里插入图片描述

4.2.2、TCC

TCC(Try-Confirm-Cancel)是一种事务模型,其概念源自于Pat Helland的论文《Life beyond Distributed Transactions:an Apostate’s Opinion》。

TCC提出了一种基于业务层面的事务定义方式,通过由业务自身控制锁粒度,解决了复杂业务中跨表跨库等大颗粒度资源锁定的问题。

TCC将事务过程分为Try(尝试)、Confirm(确认)和Cancel(取消)三个阶段,每个阶段由业务代码控制,避免了长事务的问题,从而提高了性能。

TCC 的具体流程如下图所示:

在这里插入图片描述

4.2.3、常见的保证最终一致的处理方法

  • 回滚
  • 重试
  • 监控
  • 告警
  • 幂等
  • 对账
  • 人工补偿

4.3、跨库JOIN/分页查询

4.3.1、合适的分表字段(sharding key)

合理选择,避免大多数跨库查询
在这里插入图片描述

4.3.2、搜索引擎支持:ES

数据冗余到ES,使用ES支持复杂查询。
核心流程:

  • 使用ES查询出关键字段,例如:门店id和商品id。
  • 再使用关键字段去查询完整数据。
    注意点:
  • ES只需要存储需要搜索的字段。

4.3.3、分开查询,内存中聚合

先查询出A表数据,然后根据A表的结果查询B表。
注意点:

  • 查询出来的数据量
  • 内存占用情况

4.3.4、冗余字段

A表查询需要B表的field1字段,则将B表的field1存储一份到A表上。
适用场景:只需要少量字段,则可以直接冗余。

http://www.lryc.cn/news/143820.html

相关文章:

  • 每日一学——STP、VRRP 、BFD、POE
  • Spring MVC 一 :从MVC Servlet开始
  • Ansible学习笔记(二)
  • Web安全测试(一):HTTP请求详解
  • Android工具条
  • 【项目实战典型案例】05.前后端分离的好处(发送调查问卷)
  • (Deep Learning)准确率和召回率的基础概念
  • 【业务功能篇85】微服务-springcloud-Nginx-反向代理-网关
  • 深度适配?华为鸿蒙OS智能座舱酷狗音乐车载版5.0,车内尽享K歌
  • 数字孪生体技术--学习笔记
  • proxysql使用心得
  • 【C++ 学习 ⑰】- 继承(下)
  • kafka学习笔记
  • 阀门状态监测和预测性维护的原理和实施步骤
  • 复习之web服务器--apache
  • [Unity] 单例设计模式, 可供继承的单例组件模板类
  • Linux知识点 -- Linux多线程(三)
  • android java 硬编码保存mp4 jni数据转换
  • 那些你不得不知道的HTML知识点
  • 如何复制主播的性格(此乃广告文)
  • 【ES6】—【新特性】—Symbol详情
  • openresty安装与网站发布
  • 创建延时队列、springboot配置多个rabbitmq
  • 在kaggle中用GPU使用CGAN生成指定mnist手写数字
  • 【NI USRP】哪些 USRP 设备支持全双工,哪些支持半双工?
  • 不拼花哨,只拼实用:unittest指南,干货为王!
  • mysql 获取json数组中某个字段根据下标
  • 深入理解Redis缓存穿透、击穿、雪崩及解决方案
  • java八股文面试[java基础]——字节码
  • 新能源汽车技术的最新进展和未来趋势