当前位置: 首页 > news >正文

Leetcode:238. 除自身以外数组的乘积【题解超详细】

纯C语言实现(小白也能看明白)

题目

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。

题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在  32 位 整数范围内。

不要使用除法,且在 O(n) 时间复杂度内完成此题。

难度:中等

题目链接:238. 除自身以外数组的乘积

解题思路 

由于该题不能使用除法 所以参考题解写一个左右乘积列表的方法 创建两个新的数组a,b 一个用于记录从左到右的乘积(类似于动态规划的思想)a 另一个记录从右到左的乘积 b(注意b是从右到左进行累乘) 而a的最左端为1,b的最右端为1 如此在结尾的时候只需要a*b即可 举例, ans[0]=a[0]*b[0] a[0]=1 b[0]=除了nums[0]以外所有元素的乘积

代码展示 

/*** Note: The returned array must be malloced, assume caller calls free().*/
int* productExceptSelf(int* nums, int numsSize, int* returnSize){//前缀积*后缀积 == 除自身以外数组的乘积int *answer = (int*)malloc(sizeof(int)*numsSize);answer[0] = 1;//第一个数字前面没有数字了,第一个数字的前缀是1int i = 0;//前缀积for(i = 1;i<numsSize;i++){answer[i] = answer[i-1]*nums[i-1];}//后缀积int rp[numsSize];//用来记录后缀积rp[numsSize-1] = 1;//因为最后边的数的后缀只能是1for(i = numsSize -1-1;i>=0;i--){rp[i] = rp[i+1] * nums[i+1]; }for(i = 0;i<numsSize;i++){answer[i] = answer[i] * rp[i];//前缀积*后缀积}*returnSize = numsSize;//返回数组的大小return answer;//返回数组answer
}

 【超详细解析】

首先这是一个函数功能实现,一定要注意函数的参数。(int * nums ,这是传的是数组的地址,numsSize,这是数组的大小,*numsSize ,是要返回使用后数组的大小)

接下来是 代码分析

因为 根据题目的意思 我们要返回数组answer ,可以使用malloc()动态分配内存空间

int *answer = (int*)malloc(sizeof(int)*numsSize);

这行代码的意思是:创建了一个指针变量 answer,并使用 malloc() 函数动态分配了一块内存空间,大小为 sizeof(int)*numsSize 字节。其中,sizeof(int) 是指 int 类型在当前系统中所占据的字节数,numsSize 是一个变量,表示需要分配的元素个数。通过将 malloc() 返回的内存地址强制类型转换为 int*,将其赋值给指针变量 answer。这样就可以在动态分配的内存空间中存储 numsSize 个整数。

题目的意思 计算除自身以外数组的乘积,我们根据解题思路,采用 结果 == 前缀积 * 后缀积

就比如 1 2 3 4 5,这里 我采取除3以外数组的乘积(1*2*4*5),因为题目要求不要使用除法,且在 O(n) 时间复杂度内完成此题。所以 (1*2*4*5)变为 1*2 ( 前缀积)  * 4*5(后缀积),

这样 (1*2)*(4*5)

前缀积

这里我们以数组 [1,2,3,4] , 这里我们需要注意的是 数组的第一个元素的前缀乘积和数组的最后一个元素的后缀乘积是1。我们用answer数组来接收

answer[0] = 1;

(虽然answer数组要返回结果,我们可以先使用得到前缀之积,再借助另一个数组得到后缀之积,然后两数组各个元素相乘得到结果。这样就可一个减少一定的内存消耗)

接下里求前缀积(因为我们知道数组第一个元素的前缀之积是1)故从第二个元素开始计算

    //前缀积for(i = 1;i<numsSize;i++){answer[i] = answer[i-1]*nums[i-1];}

接下来要求的是nums[1] 即第二个元素的前缀积

 

因为nums[1]  前面只有一个元素就是 1 故nums[1] 的前缀积 是1

再看nums[2]

 这时你可能有这样的疑问 为什么要 nums[1]*answer[1] 而不是 nums[0] * nums[1] 呢

这里你需要知道 乘积 肯定时连乘的 ,可以这样理解 answer数组 里面存放 的每一个阶段的乘积(其实就是每个nums数组对应的前缀的乘积)

nums[3]

 后缀乘积

    //后缀积int rp[numsSize];//用来记录后缀积rp[numsSize-1] = 1;//因为最后边的数的后缀只能是1for(i = numsSize -1-1;i>=0;i--){rp[i] = rp[i+1] * nums[i+1]; }

这提前声明了一个rp数组用来记录后缀积,数组最后的一个元素的后置缀之积 是1

rp[1]

 rp[2]

rp[3]

前缀积*后缀积

    for(i = 0;i<numsSize;i++){answer[i] = answer[i] * rp[i];//前缀积*后缀积}

最后 answer数组与rp数组对应元素做乘积(answer[i] = answer[i] * rp[i])

 这的answer数组的大小与 nums 的数组大小一致 返回 numsSize ,数组返回 answer

http://www.lryc.cn/news/142642.html

相关文章:

  • 基于单片机的智能数字电子秤proteus仿真设计
  • 大数据(二)大数据行业相关统计数据
  • Ruoyi安装部署(linux环境、前后端不分离版本)
  • PHP聚合支付网站源码/对接十多个支付接口 第三方/第四方支付/系统源码
  • 容器化微服务:用Kubernetes实现弹性部署
  • DevOps系列文章 之 Python基础
  • Harbour.Space Scholarship Contest 2023-2024 (Div. 1 + Div. 2) A ~ D
  • [管理与领导-53]:IT基层管理者 - 8项核心技能 - 8 - 持续改进
  • 芯片验证板卡设计原理图:446-基于VU440T的多核处理器多输入芯片验证板卡
  • 几个nlp的小任务(机器翻译)
  • 飞腾X100 LPDDR颗粒线序配置辅助工具
  • 二、数学建模之整数规划篇
  • C语言日常刷题 4
  • MyBatis plus 多数据源实现
  • k-近邻算法概述,k-means与k-NN的区别对比
  • node 项目搭建
  • CSS 属性值计算过程
  • QT版权查询
  • 【leetcode 力扣刷题】双指针///原地扩充线性表
  • 第八章,帖子列表
  • netty与websockt实现聊天
  • 21.2 CSS 三大特性与页面布局
  • MySQL 特殊语法时间格式以及Greadb连接
  • Python(.pyc)反编译:pycdc工具安装与使用
  • 山西电力市场日前价格预测【2023-08-28】
  • python3/pip3 SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed
  • Python中的迭代器与生成器
  • 简单着色器编写(下)
  • go并发编程基础
  • PHP之 导入excel表格时,获取日期时间变成浮点数