当前位置: 首页 > news >正文

多维时序 | MATLAB实现SCNGO-BiGRU-Attention多变量时间序列预测

多维时序 | MATLAB实现SCNGO-BiGRU-Attention多变量时间序列预测

目录

    • 多维时序 | MATLAB实现SCNGO-BiGRU-Attention多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

多维时序 | MATLAB实现SCNGO-BiGRU-Attention多变量时间序列预测。

模型描述

MATLAB实现SCNGO-BiGRU-Attention多变量时间序列预测
1.无Attention适用于MATLAB 2020版及以上版本;融合Attention要求Matlab2023版以上;
2.基于融合正余弦和折射反向学习的北方苍鹰优化算法(SCNGO)、双向门控循环单元网络(BiGRU)融合注意力机制的超前24步多变量时间序列回归预测算法;
3.多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。
通过SCNGO优化算法优化学习率、神经元个数,这2个关键参数,以最小MAPE为目标函数。
提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线)。提供MAPE、RMSE、MAE等计算结果展示。。
4.北方苍鹰优化算法(Northern Goshawk Optimization,NGO)由MOHAMMAD DEHGHANI等人于2022年提出,该算法,该算法模拟了北方苍鹰捕猎过程(猎物识别和攻击、追逐及逃生)。
改进策略参照麻雀优化算法,改进点如下:
①采用折射反向学习策略初始化北方苍鹰算法个体,基本思想是通过计算当前解的反向解来扩大搜索范围,借此找出给定问题更好的备选解;
②采用正余弦策略替换原始苍鹰算法的勘察阶段的位置更新公式;
③对正余弦策略的步长搜索因子进行改进;原始步长搜索因子呈线性递减趋势,不利于进一步平衡北方苍鹰算法的全局搜索和局部开发能力。
5.适用领域:
风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。
6.使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现SCNGO-BiGRU-Attention多变量时间序列预测获取。
 gruLayer(32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop2')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0mydevice = 'gpu';
elsemydevice = 'cpu';
endoptions = trainingOptions('adam', ...'MaxEpochs',MaxEpochs, ...'MiniBatchSize',MiniBatchSize, ...'GradientThreshold',1, ...'InitialLearnRate',learningrate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',56, ...'LearnRateDropFactor',0.25, ...'L2Regularization',1e-3,...'GradientDecayFactor',0.95,...'Verbose',false, ...'Shuffle',"every-epoch",...'ExecutionEnvironment',mydevice,...'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

http://www.lryc.cn/news/139941.html

相关文章:

  • 从零开始学习 Java:简单易懂的入门指南之JDK8时间相关类(十八)
  • Spring Boot实践八--用户管理系统(下)
  • C语言入门 Day_10 判断的进阶
  • 机器学习基础13-基于集成算法优化模型(基于印第安糖尿病 Pima Indians数据集)
  • Rancher部署k8s集群
  • 前端油猴脚本开发小技巧笔记
  • 软考高级系统架构设计师系列之:搭建论文写作的万能模版
  • 多线程常见面试题
  • Java接收json参数
  • 赤峰100吨每天医院污水处理设备产品特点
  • nodejs+vue+elementui健身房教练预约管理系统nt5mp
  • 视频分割合并工具说明
  • 2023java面试深入探析Nginx的处理流程
  • Java的锁大全
  • Leetcode80. 删除有序数组中的重复项 II
  • 电脑显示“Operating System not found”该怎么办?
  • 简析SCTP开发指南
  • 把Android手机变成电脑摄像头
  • Linux线程篇(中)
  • 深度学习优化入门:Momentum、RMSProp 和 Adam
  • LeetCode 面试题 01.09. 字符串轮转
  • 系统上线安全测评需要做哪些内容?
  • vue 中 axios 的安装及使用
  • 数据结构——线性数据结构(数组,链表,栈,队列)
  • 多态(C++)
  • 算法leetcode|73. 矩阵置零(rust重拳出击)
  • axios 二次封装
  • Rust安全之数值
  • 4种方法实现html 页面内锚点定位及跳转
  • gitlab配置备忘