当前位置: 首页 > news >正文

第六章.卷积神经网络(CNN)—卷积层(Convolution)池化层(Pooling)

第六章.卷积神经网络(CNN)

6.1 卷积层(Convolution)&池化层(Pooling)

1.整体结构

以5层神经网络的实现为例:

1).基于全连接层(Affine)的网络

全连接层:相邻层的所有神经元之间都有连接
在这里插入图片描述

2).常见的CNN的网络

在这里插入图片描述

3).全连接层存在的问题

数据的形状容易被“忽视”了,比如输入的数据是图像时,图像通常是高,长,通道方向上的3维形状,但是,全连接层输入时,需要将3维数据拉平为1维数据,所以无法利用与形状相关的信息。

2.卷积层

卷积层可以保持形状不变,当输入数据是图像时,卷积层会以3维数据的形式接受输入数据,并同样以3维数据的形式输出至下一层,因此在CNN中可以正确理解图像等具有形状的数据。

1).卷积运算

  • 一维数据的卷积计算

    示例:填充为0,步幅为1的卷积运算在这里插入图片描述

  • 三维数据的卷积计算

    示例:填充为0,步幅为1的卷积运算
    在这里插入图片描述
    计算方式
    通道方向有多特征图时,会按通道进行输入数据和滤波器的卷积运算,并结果相加,从而得到输出。

    注意
    ①.在三维数据的卷积运算中,输入数据和滤波器的通道数必须设置为相同的值。(在本例中同时设置为3)

  • 结合方块来思考卷积计算
    在这里插入图片描述
    图像描述:
    每个通道只有一个偏置,这里偏置的形状为(FN,1,1),滤波器的输出结果形状为(FN,OH,OW),这两个方块相加,要对滤波器的输出结果按通道加上相同的偏置。

  • 卷积计算的批处理
    在这里插入图片描述
    注意
    ①.网络间传递的是四维数据,对这N个数据进行了卷积运算,也就是说,批处理将N次的处理汇总成1次进行。

2).填充&步幅

  • 填充

    ①.定义
    在进行卷积层处理之前,有时需要向输入数据的周围填入固定的数据(比如填充值0等),这称为填充。
    在这里插入图片描述

    ②.目的
    主要是为了调整输出的大小,因为每次在进行卷积运算时都会缩小空间,那么在某个时刻输出大小就有可能变为1,导致无法在进行卷积运算,为了避免出现这种情况,就要使用填充

  • 步幅

    ①.定义
    应用滤波器的位置间隔称为步幅。(之前的应用都是步幅为1,下面的应用步幅为2)
    在这里插入图片描述

3).计算输出核的大小

假设输入大小为(H,W),滤波大小为(FH,FW),输出大小为(OH,OW),填充为P,步幅为S,输出大小为:
在这里插入图片描述
注意
①.所设定的值必须使式(H+2P-FH)/S(W+2P-FW)/S分别可以整除,当输入大小无法整除时,需要采取报错等对策。有的深度学习框架,当值无法除尽时,有时会向最接近的整数四舍五入,不进行报错而继续进行。

4).实现扩展

①.CNN处理4维数据时,卷积运算的实现看上去会很复杂,可以使用im2col(图像转化成矩阵)这个技巧,问题会变得很简单。

②.im2col函数会将输入数据展开以适合滤波器(权重)。具体来说,对于输入数据,将应用滤波器的区域(3维方块)横向展开为一列。

在这里插入图片描述
③.卷积运算的滤波器处理细节:使用im2col函数展开输入数据后,将卷积层的滤波器纵向展开为一列,计算两个矩阵的乘积,最后转化(reshape)为输出数据大小。
在这里插入图片描述

5).卷积层的实现

import numpy as np# 从图像到矩阵
def im2col(input_data, filter_h, filter_w, stride=1, pad=0):N, C, H, W = input_data.shapeout_h = (H + 2 * pad - filter_h) // stride + 1out_w = (W + 2 * pad - filter_w) // stride + 1img = np.pad(input_data, [(0, 0), (0, 0), (pad, pad), (pad, pad)], 'constant')col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))for y in range(filter_h):y_max = y + stride * out_hfor x in range(filter_w):x_max = x + stride * out_wcol[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N * out_h * out_w, -1)return col# 从矩阵到图像
def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):N, C, H, W = input_shapeout_h = (H + 2 * pad - filter_h) // stride + 1out_w = (W + 2 * pad - filter_w) // stride + 1col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(0, 3, 4, 5, 1, 2)img = np.zeros((N, C, H + 2 * pad + stride - 1, W + 2 * pad + stride - 1))for y in range(filter_h):y_max = y + stride * out_hfor x in range(filter_w):x_max = x + stride * out_wimg[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :]return img[:, :, pad:H + pad, pad:W + pad]class Convolution:def __init__(self, W, b, stride=1, pad=0):self.W = Wself.b = bself.stride = strideself.pad = pad# 中间数据(backward时使用)self.x = Noneself.col = Noneself.col_W = None# 权重和偏置参数的梯度self.dW = Noneself.db = None# 正向传播def forward(self, x):FN, C, FH, FW = self.W.shapeN, C, H, W = x.shapeout_h = int((H + 2 * self.pad - FH) / self.stride) + 1out_w = int((W + 2 * self.pad - FW) / self.stride) + 1col = im2col(x, FH, FW, self.stride, self.pad)col_W = self.W.reshape(FN, -1).Tout = np.dot(col, col_W) + self.bout = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)self.x = xself.col = colself.col_W = col_Wreturn out# 反向传播def backward(self, dout):FN, C, FH, FW = self.W.shapedout = dout.transpose(0, 2, 3, 1).reshape(-1, FN)self.db = np.sum(dout, axis=0)self.dW = np.dot(self.col.T, dout)self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)dcol = np.dot(dout, self.col_W.T)dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)return dx

3.池化层

池化是缩小高,长方向上的空间运算。

1).池化的处理方法

示例:填充为0,步幅为2的池化

  • Max池化(本书中所说的池化层是Max池化)
    方式:从目标区域中取最大值
    在这里插入图片描述

  • Average池化
    方式:从目标区域中取均值在这里插入图片描述

2).池化层的特征

  • 没有要学习的参数
    池化层和卷积层不同,没有要学习的参数。池化只是从目标区域中选出最大值(或均值)。

  • 通道数不发生改变
    经过池化运算,输入数据和输出数据的通道数不发生变化,计算是按通道独立进行的。
    在这里插入图片描述

  • 对微小的位置变化具有鲁棒性(健壮)
    输入数据发生微小偏差时,池化仍会返回相同的结果。

    示例:输入数据在高方向上只偏离一个像素时:
    在这里插入图片描述

3).池化层的实现步骤

①.展开输入数据
②.求各行的最大值
③.转换为合适的输出大小

在这里插入图片描述

4).池化层的实现

import numpy as np# 从图像到矩阵
def im2col(input_data, filter_h, filter_w, stride=1, pad=0):N, C, H, W = input_data.shapeout_h = (H + 2 * pad - filter_h) // stride + 1out_w = (W + 2 * pad - filter_w) // stride + 1img = np.pad(input_data, [(0, 0), (0, 0), (pad, pad), (pad, pad)], 'constant')col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))for y in range(filter_h):y_max = y + stride * out_hfor x in range(filter_w):x_max = x + stride * out_wcol[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N * out_h * out_w, -1)return col# 从矩阵到图像
def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):N, C, H, W = input_shapeout_h = (H + 2 * pad - filter_h) // stride + 1out_w = (W + 2 * pad - filter_w) // stride + 1col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(0, 3, 4, 5, 1, 2)img = np.zeros((N, C, H + 2 * pad + stride - 1, W + 2 * pad + stride - 1))for y in range(filter_h):y_max = y + stride * out_hfor x in range(filter_w):x_max = x + stride * out_wimg[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :]return img[:, :, pad:H + pad, pad:W + pad]class Pooling:def __init__(self, pool_h, pool_w, stride=1, pad=0):self.pool_h = pool_hself.pool_w = pool_wself.stride = strideself.pad = padself.x = Noneself.arg_max = None# 正向传播def forward(self, x):N, C, H, W = x.shapeout_h = int(1 + (H - self.pool_h) / self.stride)out_w = int(1 + (W - self.pool_w) / self.stride)col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)col = col.reshape(-1, self.pool_h * self.pool_w)arg_max = np.argmax(col, axis=1)out = np.max(col, axis=1)out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)self.x = xself.arg_max = arg_maxreturn out# 反向传播def backward(self, dout):dout = dout.transpose(0, 2, 3, 1)pool_size = self.pool_h * self.pool_wdmax = np.zeros((dout.size, pool_size))dmax[np.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten()dmax = dmax.reshape(dout.shape + (pool_size,))dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)dx = col2im(dcol, self.x.shape, self.pool_h, self.pool_w, self.stride, self.pad)return dx
http://www.lryc.cn/news/13975.html

相关文章:

  • c/c++开发,无可避免的模板编程实践(篇六)
  • 【Java】Spring核心与设计思想
  • 组合实现多类别分割(含实战代码)
  • 从红队视角看AWD攻击
  • 龙腾万里,福至万家——“北京龙文化促进协会第九届龙抬头传承会”在京举办
  • 《软件方法》强化自测题-业务建模(4)
  • Prometheus之pushgateway
  • 3分钟带您快速了解HIL测试及其架构
  • 华为认证含金量如何?
  • 刷题记录:牛客NC54586小翔和泰拉瑞亚
  • 面试个3年自动化测试,测试水平一言难尽。。。。
  • C++面向对象(下)
  • 面试一位软件测试6年工作者:一年经验掰成六年来用....
  • Java8 新特性--Optional
  • Pytorch GPU版本简明下载安装教程
  • 【C++】map和set的封装
  • 互融云金融控股集团管理平台系统搭建
  • Git复习
  • WebGPU学习(2)---使用VertexBuffer(顶点缓冲区)
  • 【C++之容器篇】AVL树的底层原理和使用
  • 从交换机安全配置看常见局域网攻击
  • 工具篇3.5世界热力图
  • 2023-02-20 leetcode-insertionSortList
  • LeetCode初级算法题:环形链表+排列硬币+合并两个有序数组java解法
  • 网络编程学习一
  • Javascript 立即执行函数
  • 基于Django和vue的微博用户情感分析系统
  • 【C++】IO流
  • 【论文速递】ACL 2021-CLEVE: 事件抽取的对比预训练
  • 《自动驾驶规划入门》专栏结语