当前位置: 首页 > news >正文

用手势操控现实:OpenCV 音量控制与 AI 换脸技术解析

基于opencv的手势控制音量和ai换脸

HandTrackingModule.py

import cv2
import mediapipe as mp
import timeclass handDetector():def __init__(self, mode = False, maxHands = 2, model_complexity = 1, detectionCon = 0.5, trackCon = 0.5):self.mode = modeself.maxHands = maxHandsself.model_complexity = model_complexityself.detectionCon = detectionConself.trackCon = trackConself.mpHands = mp.solutions.handsself.hands = self.mpHands.Hands(self.mode, self.maxHands, self.model_complexity, self.detectionCon, self.trackCon)self.mpDraw = mp.solutions.drawing_utilsdef findHands(self, img, draw = True):# Hand类的对象只能使用RGB图像imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)self.results = self.hands.process(imgRGB)# print(results.multi_hand_landmarks)# 如果存在手if self.results.multi_hand_landmarks:# 如果存在多个手for handLms in self.results.multi_hand_landmarks:if draw:# 设置连接线等属性self.connection_drawing_spec = self.mpDraw.DrawingSpec(color=(0, 255, 0), thickness=2)# 绘制self.mpDraw.draw_landmarks(img, handLms, self.mpHands.HAND_CONNECTIONS, connection_drawing_spec=self.connection_drawing_spec)return imgdef findPosition(self, img, handNum=0, draw=True):lmList = []# 每个点的索引和它的像素比例,若知道窗口的宽度和高度可以计算位置if self.results.multi_hand_landmarks:myHand = self.results.multi_hand_landmarks[handNum]for id, lm in enumerate(myHand.landmark):# print(id, lm)h, w, c = img.shapecx, cy = int(lm.x * w), int(lm.y * h)# print(id, cx, cy)lmList.append([id, cx, cy])if draw:cv2.circle(img, (cx, cy), 7, (255, 0, 0), cv2.FILLED)# 绘制每一只手return lmList

定义了一个名为 handDetector 的类,用于检测和跟踪手部。下面是代码的详细分析:

导入库

  • cv2: OpenCV 库,用于图像处理。
  • mediapipe as mp: 用于多媒体解决方案的库,在此用于手部检测。
  • time: 用于时间管理,但在给定的代码段中未使用。

handDetector

初始化方法 __init__

该方法用于初始化 handDetector 类的对象,并设置一些参数。

  • mode: 布尔值,控制 MediaPipe 手部解决方案的静态图像模式。默认值为 False
  • maxHands: 最大手部数量,控制同时检测的手的数量。默认值为 2
  • model_complexity: 模型复杂度,有 0、1、2 三个级别。默认值为 1
  • detectionCon: 检测置信度阈值。默认值为 0.5
  • trackCon: 跟踪置信度阈值。默认值为 0.5

此外,还创建了 MediaPipe 手部解决方案的实例,并初始化了绘图工具。

方法 findHands

该方法用于在给定图像中找到手,并根据需要绘制手部标记。

  • img: 输入图像。
  • draw: 布尔值,控制是否绘制手部标记。默认值为 True

该方法首先将图像从 BGR 转换为 RGB,然后处理图像以找到手部标记。如果找到了手部标记,并且 draw 参数为 True,则会在图像上绘制手部标记和连接线。

方法 findPosition

该方法用于在给定图像中找到手部标记的位置,并返回一个包含每个标记位置的列表。

  • img: 输入图像。
  • handNum: 手的索引,用于选择多个检测到的手中的特定一只。默认值为 0
  • draw: 布尔值,控制是否在图像上绘制每个标记的圆圈。默认值为 True

该方法遍历给定手的每个标记,并计算其在图像中的位置。如果 draw 参数为 True,则在每个标记的位置上绘制一个圆圈。

总结

handDetector 类是一个用于检测和跟踪手部的工具。它使用了 MediaPipe 的手部解决方案,并提供了在图像上绘制手部标记和连接线的功能。通过调用这些方法,你可以在视频流或静态图像中跟踪手部,甚至找到特定手部标记的位置。

VolumeHandControl.py

import cv2
import time
import numpy as np
import HandTrackingModule as htm
import math
from ctypes import cast, POINTER
from comtypes import CLSCTX_ALL
from pycaw.pycaw import AudioUtilities, IAudioEndpointVolume
wCam, hCam = 640, 480
cap = cv2.VideoCapture(0)
# 设置摄像头的宽度
cap.set(3, wCam)
# 设置摄像头的高度
cap.set(4, hCam)
pTime = 0
tiga_img = cv2.imread("tiga.jpg", cv2.IMREAD_UNCHANGED)
detector = htm.handDetector(detectionCon=0.7)face_Cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
devices = AudioUtilities.GetSpeakers()
interface = devices.Activate(IAudioEndpointVolume._iid_, CLSCTX_ALL, None)
volume = cast(interface, POINTER(IAudioEndpointVolume))
# volume.GetMute()
# volume.GetMasterVolumeLevel()
# 音量范围
volRange = volume.GetVolumeRange()
print(volRange)
# 最小音量
minVol = volRange[0]
# 最大音量
maxVol = volRange[1]
vol = 0
volBar = 400
volPer = 0
def overlay_img(img, img_over, img_over_x, img_over_y):# 背景图像高宽img_w, img_h, img_c = img.shape# 覆盖图像高宽通道数img_over_h, img_over_w, img_over_c = img_over.shape# 转换成4通道if img_over_c == 3:img_over = cv2.cvtColor(img_over, cv2.COLOR_BGR2BGRA)# 遍历列for w in range(0, img_over_w):#遍历行for h in range(0, img_over_h):if img_over[h, w, 3] != 0:# 遍历三个通道for c in range(0, 3):x = img_over_x + wy = img_over_y + hif x >= img_w or y >= img_h:breakimg[y-40, x, c] = img_over[h, w, c]return imgwhile True:success, img = cap.read()gray_frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)height, width, channel = img.shapefaces = face_Cascade.detectMultiScale(gray_frame, 1.15, 5)for (x, y, w, h) in faces:gw = wgh = int(height * w / width)tiga_img = cv2.resize(tiga_img, (gw, gh+gh))print(gw, gh)if 0 <= x < img.shape[1] and 0 <= y < img.shape[0]:overlay_img(img, tiga_img, x, y)img = detector.findHands(img)lmList = detector.findPosition(img, draw=False)if len(lmList) != 0:# print(lmList[4], lmList[8])x1, y1 = lmList[4][1], lmList[4][2]x2, y2 = lmList[8][1], lmList[8][2]cv2.circle(img, (x1, y1), 15, (255, 0, 255), cv2.FILLED)cv2.circle(img, (x2, y2), 15, (255, 0, 255), cv2.FILLED)cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), 3)cx, cy = (x1+x2)//2, (y1+y2)//2cv2.circle(img, (cx, cy), 15, (255, 0, 255), cv2.FILLED)length = math.hypot(x2 - x1, y2 - y1)print(length)# Hand rang 130 25# Vomume Range -65 0vol = np.interp(length, [25, 175], [minVol, maxVol])volBar = np.interp(length, [25, 175], [400, 150])volPer = np.interp(length, [25, 175], [0, 100])print(int(length), vol)volume.SetMasterVolumeLevel(vol, None)if length<25:cv2.circle(img, (cx, cy), 15, (0, 255, 0), cv2.FILLED)cv2.rectangle(img, (50, 150), (85, 400), (255, 0, 0), 3)cv2.rectangle(img, (50, int(volBar)), (85, 400), (255, 0, 0), cv2.FILLED)cv2.putText(img, f'{int(volPer)} %', (40, 450), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 0, 0), 3)cTime = time.time()fps = 1/(cTime - pTime)pTime = cTimecv2.putText(img, f'FPS:{int(fps)}', (40, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 0, 0), 3)cv2.imshow("img", img)cv2.waitKey(1)

1. 导入必要的库

  • OpenCV (cv2): 用于图像处理,例如读取图像、转换颜色空间、绘制形状等。
  • NumPy (np): 用于数值计算,特别是线性插值。
  • HandTrackingModule as htm: 导入自定义的手部检测模块。
  • math: 提供数学功能,例如计算两点间的距离。
  • ctypes, comtypes, pycaw.pycaw: 用于与操作系统的音量控制交互。

2. 初始化参数和对象

  • 摄像头大小 (wCam, hCam): 定义摄像头的宽度和高度。
  • 摄像头 (cap): 通过 OpenCV 初始化摄像头,并设置宽度和高度。
  • 时间 (pTime): 用于计算帧率。
  • 图像叠加 (tiga_img): 读取一个图像文件,稍后用于叠加。
  • 手部检测器 (detector): 使用自定义的手部检测模块创建检测器对象,设置检测置信度为 0.7。
  • 人脸检测 (face_Cascade): 加载 OpenCV 的 Haar 级联分类器来检测人脸。
  • 音量控制 (volume): 通过 pycaw 访问系统的音量控制,获取音量范围。

3. 定义图像叠加函数 overlay_img

该函数负责将一个图像叠加到另一个图像上的特定位置。它遍历覆盖图像的每个像素,并将非透明像素复制到背景图像的相应位置。

4. 主循环

在无限循环中,代码执行以下任务:

a. 人脸检测和图像叠加

  • 读取图像: 从摄像头捕获图像。
  • 灰度转换: 将图像转换为灰度,以便进行人脸检测。
  • 人脸检测: 使用级联分类器检测人脸。
  • 调整叠加图像: 根据人脸大小调整叠加图像的大小。
  • 叠加图像: 调用 overlay_img 函数将图像叠加到人脸上。

b. 手部检测和音量控制

  • 检测手部: 调用 detector.findHands 在图像上检测并绘制手部。
  • 找到位置: 调用 detector.findPosition 获取手部标记的位置。
  • 计算距离: 计算手部标记 4 和 8 之间的距离。
  • 绘制形状: 在这两个点上绘制圆圈,并在它们之间绘制线条。
  • 音量映射: 使用 NumPy 的 np.interp 函数将手的距离映射到音量范围。
  • 设置音量: 调用 volume.SetMasterVolumeLevel 设置系统音量。

c. 可视化

  • 绘制音量条: 在图像上绘制一个表示音量级别的矩形条。
  • 计算帧率: 使用当前时间和上一帧的时间计算帧率。
  • 绘制帧率: 在图像上绘制帧率文本。

d. 显示结果

  • 显示图像: 使用 OpenCV 的 imshow 方法显示处理后的图像。
  • 等待: 通过 OpenCV 的 waitKey 方法等待 1 毫秒,这样可以实时更新图像。

总结

这个代码集成了多个功能:通过摄像头捕获图像,检测人脸并在人脸上叠加图像,检测手部并通过手指之间的距离控制系统音量,然后通过 OpenCV 实时显示结果。它结合了图像处理、人脸和手部检测、系统交互和实时可视化,展示了计算机视觉和人机交互的强大功能。

效果

image-20230821012535304
(B站演示视频)[https://www.bilibili.com/video/BV1Xu41177Gz/?spm_id_from=333.999.0.0]

http://www.lryc.cn/news/139469.html

相关文章:

  • 【leetcode 力扣刷题】移除链表元素 多种解法
  • leetcode503. 下一个更大元素 II 单调栈
  • Oracle中列的维护
  • 后端项目开发:分页功能的实现(Mybatis+pagehelper)
  • SpringBoot集成Drools
  • React创建组件的三种方式及其区别是什么?
  • W6100-EVB-PICO进行UDP组播数据回环测试(九)
  • Qt 阴影边框
  • 前端面试:【性能优化】页面加载性能、渲染性能、资源优化
  • 从按下电源键到进入系统,CPU在干什么?
  • TypeScript初体验
  • 基于 Alpine 环境源码构建 alibaba-tengine(阿里巴巴)的 Docker 镜像
  • 政府网站定期巡检:构建高效、安全与透明的数字政务
  • C++信息学奥赛1138:将字符串中的小写字母转换成大写字母
  • leetcode1475. 商品折扣后的最终价格 【单调栈】
  • macOS M1使用TensorFlow GPU加速
  • GNU-gcc编译选项-1
  • 【DEVOPS】Jenkins使用问题 - 控制台输出乱码
  • logback-spring.xml
  • 华为OD机试之报文重排序【Java源码】
  • 回归预测 | MATLAB实现BES-ELM秃鹰搜索优化算法优化极限学习机多输入单输出回归预测(多指标,多图)
  • DPU在东数西算背景下如何赋能下一代算力基础设施 中科驭数在未来网络发展大会论道
  • 2021年12月 C/C++(四级)真题解析#中国电子学会#全国青少年软件编程等级考试
  • ArcGIS Serve Windows下用户密码变更导致Server服务无法启动问题
  • React 面试题集锦
  • xargs命令解决“Argument list too long”
  • R语言中<- 的含义
  • 知识图谱Neo4j安装到实践全过程
  • 贪心算法:简单而高效的优化策略
  • 一生一芯6——ubuntu rpm软件安装