当前位置: 首页 > news >正文

Facebook HiPlot “让理解高维数据变得容易”

在这个全球信息化的时代,数据量呈爆炸式增长,数据的复杂性也是如此。如何有效地处理高维数据并找到隐藏在其中的相关性和模式是一个严峻的挑战。近年来,可视化和可视化分析已被应用于该任务,并取得了一些积极成果。Facebook的新HiPlot是一个轻量级的交互式可视化工具,它更进一步,使用平行图来发现此类高维数据中的相关性和模式。

HiPlot 在交互性、简单性和可扩展性方面优于其他现有可视化工具。造成这种情况的原因有很多。首先,HiPlot 使用交互式平行图(可视化和过滤高维数据的有用方法)和其他图形方法来更清晰地呈现信息。平行图是交互式的,通过沿不同值范围内的一个或多个轴绘制或使用不同的颜色,用户可以轻松自行决定更改数据可视化样式。其次,HiPlot可以直接通过IPython笔记本使用,其中简单的语法使用户能够同时查看多个实验。第三,不同系统日志格式的不兼容会使数据分析变得困难,但HiPlot与开源Facebook AI库中的日志兼容,以帮助研究人员更好地进行超参数搜索。HiPlot的Web服务器默认可以读取CSV或JSON文件,用户还可以提供他们的自定义Python解析器,将他们的实验转换为HiPlot实验。

例如,在基于群体的训练可视化的情况下,由于现有超参数调整方法的训练任务可能会使用不同的超参数多次分叉,因此分析此类实验具有挑战性,并且它们可能包含难以发现的错误。然而,HiPlot可以显示相关数据点之间的边界,使此类实验更加容易和准确地可视化。

2023-08-24T03:15:11.png

Facebook HiPlot 可以通过有效分析深度神经网络的超参数调整来帮助缓解与模型复杂性增加相关的问题。Facebook AI希望其他研究人员能够使用HiPlot更彻底地探索他们的实验数据,并为未来更高效的训练技术提供基础。

有关HiPlot的更多信息,请查看项目页面。HiPlot 工具可以从 GitHub 下载。

http://www.lryc.cn/news/139381.html

相关文章:

  • 【python】:python新设备环境移植(requirements.txt)
  • 分类预测 | MATLAB实现1D-2D-CNN-GRU的多通道输入数据分类预测
  • 【LeetCode】125. 验证回文串 - 双指针
  • centos7设置java后端项目开机自启【脚本、开机自启】
  • 亿赛通电子文档安全管理系统 RCE漏洞复现(QVD-2023-19262)
  • 一文读懂 Nuxt.js 服务端组件
  • LeetCode--HOT100题(39)
  • “车-路-网”电动汽车充电负荷时空分布预测(matlab)
  • 【核磁共振成像】方格化重建
  • JAVA中时间戳和LocalDateTime的互转
  • 无涯教程-进程 - 创建终止
  • LLMs参考资料第一周以及BloombergGPT特定领域的训练 Domain-specific training: BloombergGPT
  • LeetCode字符串数组最长公共前缀
  • Git gui教程---第八篇 Git gui的使用 创建一个分支
  • Docker修改daemon.json添加日志后无法启动的问题
  • QT6编译的文件分布情况
  • 2023中国算力大会 | 中科驭数加入DPU推进计划,探讨DPU如何激活算网融合新基建
  • leetcode 115. 不同的子序列
  • gradio应用transformer模块部署生成式人工智能应用程序
  • 【目标检测】“复制-粘贴 copy-paste” 数据增强实现
  • 深度学习知识总结2:主要涉及深度学习基础知识、卷积神经网络和循环神经网络
  • Spring Boot 集成 WebSocket 实现服务端推送消息到客户端
  • vr游乐场项目投资方案VR主题游乐馆互动体验
  • chrom扩展开发配合百度图像文字识别实现自动登录(后端.net core web api)
  • 香港服务器怎么打开SSH
  • 【LeetCode】437.路径总和Ⅲ
  • Mybatis-plus中操作JSON字段
  • 第十五课、Windows 下打包发布 Qt 应用程序
  • 【php】windows下php运行已有php web项目环境配置教程
  • 【mybatis】 mybatis在mysql 更新update 操作 更新时间字段按照年月日时分秒格式 更新为当前时间...