当前位置: 首页 > news >正文

校园供水系统智能管理

import pandas as pd
data1=pd.read_excel("C://Users//JJH//Desktop//E//附件_一季度.xlsx")
data2=pd.read_excel("C://Users//JJH//Desktop//E//附件_二季度.xlsx")
data3=pd.read_excel("C://Users//JJH//Desktop//E//附件_三季度.xlsx")
data4=pd.read_excel("C://Users//JJH//Desktop//E//附件_四季度.xlsx")
data1
水表名水表号采集时间上次读数当前读数用量
0司法鉴定中心02019/1/1 00:15:002157.12157.10.0
1司法鉴定中心02019/1/1 00:30:002157.12157.10.0
2司法鉴定中心02019/1/1 00:45:002157.12157.10.0
3司法鉴定中心02019/1/1 01:00:002157.12157.10.0
4司法鉴定中心02019/1/1 01:15:002157.12157.10.0
.....................
729278物业30301001022019/3/31 22:45:0050.950.90.0
729279物业30301001022019/3/31 23:00:0050.950.90.0
729280物业30301001022019/3/31 23:15:0050.950.90.0
729281物业30301001022019/3/31 23:30:0050.950.90.0
729282物业30301001022019/3/31 23:45:0050.950.90.0

729283 rows × 6 columns

data1.isnull().sum()
水表名     0
水表号     0
采集时间    0
上次读数    0
当前读数    0
用量      0
dtype: int64
data2.isnull().sum()
水表名     0
水表号     0
采集时间    0
上次读数    0
当前读数    0
用量      0
dtype: int64
data3.isnull().sum()
水表名     0
水表号     0
采集时间    0
上次读数    0
当前读数    0
用量      0
dtype: int64
data4.isnull().sum()
水表名     0
水表号     0
采集时间    0
上次读数    0
当前读数    0
用量      0
dtype: int64
import numpy as np
# 合并数据
data1['季度'] = pd.Series(["一季度" for i in range(len(data1.index))])
data2['季度'] = pd.Series(["二季度" for i in range(len(data2.index))])
data3['季度'] = pd.Series(["三季度" for i in range(len(data3.index))])
data4['季度'] = pd.Series(["四季度" for i in range(len(data4.index))])
data1
水表名水表号采集时间上次读数当前读数用量季度
0司法鉴定中心02019/1/1 00:15:002157.12157.10.0一季度
1司法鉴定中心02019/1/1 00:30:002157.12157.10.0一季度
2司法鉴定中心02019/1/1 00:45:002157.12157.10.0一季度
3司法鉴定中心02019/1/1 01:00:002157.12157.10.0一季度
4司法鉴定中心02019/1/1 01:15:002157.12157.10.0一季度
........................
729278物业30301001022019/3/31 22:45:0050.950.90.0一季度
729279物业30301001022019/3/31 23:00:0050.950.90.0一季度
729280物业30301001022019/3/31 23:15:0050.950.90.0一季度
729281物业30301001022019/3/31 23:30:0050.950.90.0一季度
729282物业30301001022019/3/31 23:45:0050.950.90.0一季度

729283 rows × 7 columns

data = data1.append([data2,data3,data4],ignore_index=True) # 添加合并
data
C:\Users\JJH\AppData\Local\Temp\ipykernel_31264\4019438690.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.data = data1.append([data2,data3,data4],ignore_index=True) # 添加合并
水表名水表号采集时间上次读数当前读数用量季度
0司法鉴定中心02019/1/1 00:15:002157.12157.10.0一季度
1司法鉴定中心02019/1/1 00:30:002157.12157.10.0一季度
2司法鉴定中心02019/1/1 00:45:002157.12157.10.0一季度
3司法鉴定中心02019/1/1 01:00:002157.12157.10.0一季度
4司法鉴定中心02019/1/1 01:15:002157.12157.10.0一季度
........................
3086783消防36203032002019/12/31 22:45:0022.022.00.0四季度
3086784消防36203032002019/12/31 23:00:0022.022.00.0四季度
3086785消防36203032002019/12/31 23:15:0022.022.00.0四季度
3086786消防36203032002019/12/31 23:30:0022.022.00.0四季度
3086787消防36203032002019/12/31 23:45:0022.022.00.0四季度

3086788 rows × 7 columns

x=data[['水表名','用量','采集时间']]
x
水表名用量采集时间
0司法鉴定中心0.02019/1/1 00:15:00
1司法鉴定中心0.02019/1/1 00:30:00
2司法鉴定中心0.02019/1/1 00:45:00
3司法鉴定中心0.02019/1/1 01:00:00
4司法鉴定中心0.02019/1/1 01:15:00
............
3086783消防0.02019/12/31 22:45:00
3086784消防0.02019/12/31 23:00:00
3086785消防0.02019/12/31 23:15:00
3086786消防0.02019/12/31 23:30:00
3086787消防0.02019/12/31 23:45:00

3086788 rows × 3 columns

x1=x[x['水表名']=='消防']
x1
水表名用量采集时间
1500912消防0.02019/4/22 12:15:00
1500913消防0.02019/4/22 12:30:00
1500914消防0.02019/4/22 12:45:00
1500915消防0.02019/4/22 13:00:00
1500916消防0.02019/4/22 13:15:00
............
3086783消防0.02019/12/31 22:45:00
3086784消防0.02019/12/31 23:00:00
3086785消防0.02019/12/31 23:15:00
3086786消防0.02019/12/31 23:30:00
3086787消防0.02019/12/31 23:45:00

23984 rows × 3 columns

import matplotlib.pyplot as plt
print(len(x1))
23984
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov']  # 自定义刻度标签
x = range(23984)# 自定义x轴刻度
num_ticks = 6  # 指定刻度数量
step = len(x) // num_ticks  # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)]  # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x1['采集时间'],x1['用量'],color='black',linewidth=0.5)
plt.show()       


在这里插入图片描述

x=data[['水表名','用量','采集时间']]
x
水表名用量采集时间
0司法鉴定中心0.02019/1/1 00:15:00
1司法鉴定中心0.02019/1/1 00:30:00
2司法鉴定中心0.02019/1/1 00:45:00
3司法鉴定中心0.02019/1/1 01:00:00
4司法鉴定中心0.02019/1/1 01:15:00
............
3086783消防0.02019/12/31 22:45:00
3086784消防0.02019/12/31 23:00:00
3086785消防0.02019/12/31 23:15:00
3086786消防0.02019/12/31 23:30:00
3086787消防0.02019/12/31 23:45:00

3086788 rows × 3 columns

x2=x[x['水表名']=='XXX第一学生宿舍']
x2
水表名用量采集时间
220372XXX第一学生宿舍0.122019/1/1 00:15:00
220373XXX第一学生宿舍0.122019/1/1 00:30:00
220374XXX第一学生宿舍0.122019/1/1 00:45:00
220375XXX第一学生宿舍0.122019/1/1 01:00:00
220376XXX第一学生宿舍0.122019/1/1 01:15:00
............
2533541XXX第一学生宿舍0.402019/12/31 22:45:00
2533542XXX第一学生宿舍0.402019/12/31 23:00:00
2533543XXX第一学生宿舍0.502019/12/31 23:15:00
2533544XXX第一学生宿舍0.502019/12/31 23:30:00
2533545XXX第一学生宿舍0.502019/12/31 23:45:00

35039 rows × 3 columns

# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov']  # 自定义刻度标签# 自定义x轴刻度
num_ticks = 6  # 指定刻度数量
step = len(x2) // num_ticks  # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)]  # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x2['采集时间'],x2['用量'],color='black',linewidth=0.5)
plt.show()       

在这里插入图片描述

x=data[['水表名','用量','采集时间']]
x3=x[x['水表名']=='留学生楼(新)']
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov']  # 自定义刻度标签# 自定义x轴刻度
num_ticks = 6  # 指定刻度数量
step = len(x3) // num_ticks  # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)]  # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x3['采集时间'],x3['用量'],color='black',linewidth=0.3)
plt.show()       


在这里插入图片描述

x=data[['水表名','用量','采集时间']]
x4=x[x['水表名']=='XXX教学大楼总表']
# 自定义x轴刻度
xticks = ['Jan', 'Mar', 'May', 'Jul', 'Sep','Nov']  # 自定义刻度标签# 自定义x轴刻度
num_ticks = 6  # 指定刻度数量
step = len(x4) // num_ticks  # 计算刻度步长
xtick_positions = [i * step for i in range(num_ticks)]  # 生成刻度位置
plt.xticks(xtick_positions, xticks)
plt.plot(x4['采集时间'],x4['用量'],color='black',linewidth=0.3)
plt.show()       


在这里插入图片描述

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 指定字体为SimHei
labels = ['消防', '留学生楼(新)', 'XXX教学大楼总表']plt.boxplot([x1['用量'],x3['用量'],x4['用量']])plt.xticks(range(1, 4), labels)
# 显示图形
plt.show()

在这里插入图片描述

http://www.lryc.cn/news/139086.html

相关文章:

  • Flask-SocketIO和Flask-Login联合开发socketio权限系统
  • 航空电子设备中的TSN通讯架构—直升机
  • elment-ui中使用el-steps案例
  • FPGA解析串口指令控制spi flash完成连续写、读、擦除数据
  • msvcp120.dll丢失的解决方法,分享三种快速修复的方法
  • mysql 8.0 窗口函数 之 序号函数 与 sql server 序号函数 一样
  • fastgpt构建镜像
  • Git笔记--分支常用命令
  • 常见设计模式学习+面试总结
  • sql解决取多个截至每个月的数据
  • 数据采集:selenium 获取 CDN 厂家各省市节点 IP
  • 【el-tree】树形组件图标的自定义
  • UltralSO软碟通制作Linux系统盘
  • yolov8训练心得 持续更新
  • 超越界限:大模型应用领域扩展,探索文本分类、文本匹配、信息抽取和性格测试等多领域应用
  • Compose - 基本使用
  • Unity3D Pico VR 手势识别
  • 【docker】运行registry
  • java八股文面试[Spring]——如何实现一个IOC容器
  • Redis 列表 | Navicat
  • 【校招VIP】测试专业课之TCP/IP模型
  • leetcode76. 最小覆盖子串(滑动窗口-java)
  • 后端项目开发:整合全局异常处理
  • Linux socket网络编程概述 和 相关API讲解
  • uni-app封装省市区下拉组件(后台获取数据)
  • laravel中Mail发送邮件失败,但是没有错误信息,该如何调试?
  • 软考高级系统架构设计师系列论文八十五:论软件产品线技术
  • More Effective C++学习笔记(4)
  • 概率密度函数 累积分布函数
  • 基于OpenCV实战(基础知识二)