当前位置: 首页 > news >正文

深度学习-实验1

一、Pytorch基本操作考察(平台课+专业课)

  1. 使用𝐓𝐞𝐧𝐬𝐨𝐫初始化一个 𝟏×𝟑的矩阵 𝑴和一个 𝟐×𝟏的矩阵 𝑵,对两矩阵进行减法操作(要求实现三种不同的形式),给出结果并分析三种方式的不同(如果出现报错,分析报错的原因)同时需要指出在 计算过程中发生了什么
import torch
a = torch.rand(1,3)
b = torch.rand(2,1)
print('a=',a)
print('b=',b)
print(a-b)
print(torch.sub(a,b))
a.sub_(b)
  1. 利用 𝐓𝐞𝐧𝐬𝐨𝐫创建两个大小分别 𝟑×𝟐 和 𝟒×𝟐的 随机数矩阵 𝑷和 𝑸,要求服从均值为 0 ,标准差 0.01 为的 正态分布 ;② 对第二步得到的矩阵 𝑸 进行形状变换得到 𝑸的转置 𝑸𝑻;③ 对上述得到的矩阵 𝑷和矩阵 𝑸𝑻 求矩阵相乘
import torch
import numpy as np
x = np.random.normal(0,0.01,3*2)
y = np.random.normal(0,0.01,4*2)
P = torch.from_numpy(x).clone().view(3,2)
print("P矩阵为:",P)
Q = torch.from_numpy(y).clone().view(4,2)
print("Q矩阵为:",Q)
Qt = Q.t()
print("Qt矩阵为:",Qt)
R = torch.mm(P,Qt)
print("P矩阵与Qt矩阵相乘的结果为:",R)
  1. 给定公式𝑦3=𝑦1+𝑦2=𝑥2+𝑥3 且 𝑥=1。利用学习所得到的 Tensor 的相关知识,求 𝑦3对 𝑥的梯度,即 𝑑𝑦3𝑑𝑥。要求在计算过程中,在计算 𝑥3 时中断梯度的追踪, 观察结果并进行原因分析
import torch
x = torch.tensor(1.,requires_grad=True)
y1 = x**2
y2 = x**3
y3 = y1+y2
y3.backward()
print("计算x的梯度:",x.grad)
import torch
x = torch.tensor(1.,requires_grad=True)
y1 = x**2
with torch.no_grad():y2 = x**3
y3 = y1+y2
y3.backward()
print("不计算x三次方的梯度:",x.grad)

二、手动实现logistic回归

  1. 要求动手从 0 实现 logistic 回归 (只借助 Tensor 和 Numpy 相关的库)在 人工构造的数据集上进行训练和测试,并从 loss 以及训练集上的准确率等多个角度对结果进行分析

导入包

import torch
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import torch.nn as nn

生成训练集

#标准化数据
def sdata(data):sdata = np.interp(data, (data.min(), data.max()), (0, 1))return sdata
num_examples = 500num1 = np.c_[np.random.normal(3, 1, (num_examples , 2)),np.ones(num_examples)]
num2 = np.c_[np.random.normal(1, 1, (num_examples , 2)),np.zeros(num_examples)]
num = np.vstack((num1,num2))
np.random.shuffle(num)#打乱数据
np.savetxt('test',(num))#将数据等比例压缩在0-1之间
snum1 = sdata(num[:,0]).reshape(num_examples*2,1)
snum2 = sdata(num[:,1]).reshape(num_examples*2,1)
snum = np.concatenate((snum1,snum2,num[:,2].reshape(num_examples*2,1)), axis=1)#将numpy格式的数据转为tensor格式
num1_tensor = torch.tensor((np.c_[snum[:,0],snum[:,1]]),dtype=torch.float)
num2_tensor = torch.tensor(snum[:,2],dtype=torch.float).unsqueeze(1)#绘制数据的图像
column_values = num[:,2]
xy0 = snum[column_values == 0]
xy1 = snum[column_values == 1]
plt.plot(xy0[:,0],xy0[:,1],'bo', label='x_1')
plt.plot(xy1[:,0],xy1[:,1],'ro', label='x_1')

运行结果:
在这里插入图片描述
损失函数:二元交叉熵

def binary_loss(y_pred, y):loss = nn.BCELoss()return loss(y_pred , y)

优化算法:梯度优化算法

def sgd(w,b):w.data = w.data - 0.1 * w.grad.datab.data = b.data - 0.1 * b.grad.dataw.grad.zero_()b.grad.zero_()

构建模型和模型训练

#sigmoid函数
def sigmoid(x):return 1 / (1 + torch.exp(-x))def logistic_regression(x):return sigmoid(torch.mm(x, w) + b)#正确率计算
def accu(y_pred,y):correct = (y_pred == y).sum()/y.numel()return correctw = torch.rand(2, 1, requires_grad=True)##torch.rand默认随机产生的数据都是0-1
b = torch.zeros(1, requires_grad=True)#模型训练
for nums in range(1,1000):y_pred = logistic_regression(num1_tensor)loss = binary_loss(y_pred, num2_tensor)loss.backward()sgd(w,b)if nums%200==0 :mask = y_pred.ge(0.5).float()acc = accu(mask,num2_tensor)print('第',nums,'次循环后','los =',f"{loss.data.float().item():.3f}",' acc =',f"{acc.item():.3f}")
print('第',nums+1,'次循环后','los =',f"{loss.data.float().item():.3f}",' acc =',f"{acc.item():.3f}")

运行结果:
在这里插入图片描述
绘制图像

cline_x = np.arange(0, 1, 0.01)
cline_y = (-w[0].data[0] * cline_x - b.data[0]) / w[1].data[0]column_values = num[:,2]
xy0 = snum[column_values == 0]
xy1 = snum[column_values == 1]plt.plot(cline_x, cline_y, 'g', label='cutting line')
plt.plot(xy0[:,0],xy0[:,1],'bo', label='label=0')
plt.plot(xy1[:,0],xy1[:,1],'ro', label='label=1')
plt.legend(loc='best')

运行结果:
在这里插入图片描述

  1. 利用torch.nn实现logistic回归在人工构造的数据集上进行训练和测试,并对结果进行分析并从loss以及训练集上的准确率等多个角度 对结果进行分析
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np# 构造训练数据集
# 假设特征向量为2维,标签为0或1
def sdata(data):sdata = np.interp(data, (data.min(), data.max()), (0, 1))return sdatanum_examples = 500num1 = np.c_[np.random.normal(3, 1, (num_examples , 2)),np.ones(num_examples)]
num2 = np.c_[np.random.normal(1, 1, (num_examples , 2)),np.zeros(num_examples)]
num = np.vstack((num1,num2))
np.random.shuffle(num)#打乱数据
np.savetxt('test',(num))#将数据等比例压缩在0-1之间
snum1 = sdata(num[:,0]).reshape(num_examples*2,1)
snum2 = sdata(num[:,1]).reshape(num_examples*2,1)
snum = np.concatenate((snum1,snum2,num[:,2].reshape(num_examples*2,1)), axis=1)#将numpy格式的数据转为tensor格式
train_features = torch.tensor((np.c_[snum[:,0],snum[:,1]]),dtype=torch.float)
train_labels = torch.tensor(snum[:,2],dtype=torch.float).unsqueeze(1)# 定义 logistic 回归模型
class LogisticRegression(nn.Module):def __init__(self, input_dim):#继承super().__init__()self.linear = nn.Linear(input_dim, 1)#设置一个全连接层def forward(self, x):out = self.linear(x)#先经过一遍全连接层,得到outself.sigmoid = nn.Sigmoid()out = self.sigmoid(out)#使用out经过激活函数return out# 初始化模型和损失函数
net = LogisticRegression(2)
BCEloss = nn.BCELoss()#损失函数
optimizer = optim.SGD(net.parameters(), lr=0.01)##优化器# 迭代训练
num_epochs = 6000
for epoch in range(num_epochs):# 前向传播outputs = net(train_features)#算下lossloss = BCEloss(outputs.flatten(), train_labels.float().squeeze())# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()#参数更新# 打印最终的损失
print(f"Final loss: {loss.item()}")# 在训练集上进行预测
with torch.no_grad():predicted_labels = net(train_features).round()# 计算训练集上的准确率
accuracy = (predicted_labels == train_labels).sum().item() / len(train_labels)
print(f"Accuracy on the training set: {accuracy}")

运行结果:
在这里插入图片描述

动手实现softmax回归

  1. 要求动手从 0 实现 softmax 回归 (只借助 Tensor 和 Numpy 相关的库)在 Fashion MNIST 数据集上进行训练和测试 ,并从 loss 、训练集以及测试集上的准确率等多个角度对结果进行分析

导入数据

# 1、加载Fashion-MNIST数据集(采用已划分好的训练集和测试集)
#训练集
mnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',train=True,download=True,transform=transforms.ToTensor())
#测试集
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',train=False,download=True,transform=transforms.ToTensor()
)

数据加载

BATCH_SIZE = 500
train_loader = torch.utils.data.DataLoader(dataset = mnist_train,batch_size=BATCH_SIZE,shuffle=True,num_workers=0
)test_loader = torch.utils.data.DataLoader(dataset = mnist_test,batch_size=BATCH_SIZE,shuffle=False,num_workers=0
)

损失函数:交叉熵损失函数(代码略)

优化算法:SGD(代码略)

搭建softmax回归模型

def softmax(X):X_exp = torch.exp(X)partition = X_exp.sum(1, keepdim=True)return X_exp / partitiondef net(X):return softmax(torch.mm(X.view((-1, 784)), W) + b)

准确率计算

def evaluate_accurcy(data_iter): #测试集正确率计算right_count, all_num = 0.0, 0for x, y in data_iter:right_count += (net(x).argmax(dim=1) == y).float().sum().item()all_num += y.shape[0]return right_count / all_numdef corrcet_num(predicted_probs, labels):predicted_labels = torch.argmax(predicted_probs, dim=1)correct = (predicted_labels == labels).sum().item()return correct

模型训练

lr = 0.1
num_epochs = 5
W = torch.normal(0, 0.1, (784, 10), dtype=torch.float32).requires_grad_()
b = torch.normal(0, 0.01, (1, 10), dtype=torch.float32).requires_grad_()for epoch in range(num_epochs):train_right_sum, train_all_sum, train_loss_sum = 0.0, 0, 0.0for X, y in train_loader:y_pred = net(X)loss = CEloss(y_pred, y).sum()loss.backward()sgd([W, b], lr, BATCH_SIZE)train_loss_sum += loss.item()train_right_sum += corrcet_num(y_pred,y) #训练集正确数量train_all_sum += y.shape[0]test_acc = evaluate_accurcy(test_loader)  # 测试集正确率print('epoch:{}|loss:{}'.format(epoch, train_loss_sum/train_all_sum))print('训练集正确率:{}|测试集正确率:{}'.format(train_right_sum/train_all_sum, test_acc))

输出结果:
在这里插入图片描述

  1. 利用 torch.nn 实现 softmax 回归在 Fashion MNIST 数据集上进行训练和测试,并从 loss ,训练集以及测试集上的准确率等多个角度对结果进行分析
import torch
import torch.nn as nn
from torch import tensor
import torch.optim as optim
import numpy as np
import torchvision
import torchvision.transforms as transformsmnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',train=True,download=True,transform=transforms.ToTensor())  # 将所有数据转换为Tensor
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST',train=False,download=True,transform=transforms.ToTensor()
)BATCH_SIZE = 256
train_loader = torch.utils.data.DataLoader(dataset = mnist_train,batch_size=BATCH_SIZE,shuffle=True,num_workers=0
)test_loader = torch.utils.data.DataLoader(dataset = mnist_test,batch_size=BATCH_SIZE,shuffle=False,num_workers=0
)input_dim = 784
output_dim = 10class SoftmaxRegression(nn.Module):def __init__(self, input_dim , output_dim):#继承super().__init__()self.linear = nn.Linear(input_dim, output_dim)#设置一个全连接层def forward(self, x):x = x.view(-1,input_dim)out = self.linear(x)#先经过一遍全连接层,得到outself.softmax = nn.Softmax()out = self.softmax(out)#使用out经过激活函数return outnet = SoftmaxRegression(input_dim,output_dim)
lr = 0.1
CEloss = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr)num_epoch = 5def evaluate_accurcy(data_iter): #测试集正确率计算right_count, all_num = 0.0, 0for x, y in data_iter:right_count += (net(x).argmax(dim=1) == y).float().sum().item()all_num += y.shape[0]return right_count / all_numdef corrcet_num(predicted_probs, labels):predicted_labels = torch.argmax(predicted_probs, dim=1)correct = (predicted_labels == labels).sum().item()return correctfor epoch in range(num_epoch):train_right_sum, train_all_sum, train_loss_sum = 0.0, 0, 0.0for X, y in train_loader:# 前向传播y_pred = net(X)#算下lossloss = CEloss(y_pred, y)# 反向传播和优化loss.backward()optimizer.step()optimizer.zero_grad()#参数更新train_loss_sum += loss.item()train_right_sum += corrcet_num(y_pred,y) #训练集正确数量train_all_sum += y.shape[0]test_acc = evaluate_accurcy(test_loader)print('epoch:{}|loss:{}'.format(epoch, train_loss_sum/train_all_sum))print('训练集正确率:{}|测试集正确率:{}'.format(train_right_sum/train_all_sum, test_acc))
http://www.lryc.cn/news/135527.html

相关文章:

  • 互联网医院开发|医院叫号系统提升就医效率
  • 手写 Mybatis-plus 基础架构(工厂模式+ Jdk 动态代理统一生成代理 Mapper)
  • 【C++11算法】iota算法
  • 付费加密音乐格式转换Mp3、Flac工具
  • React前端开发架构:构建现代响应式用户界面
  • Azure Bastion的简单使用
  • 深入理解高并发编程 - 深度解析ScheduledThreadPoolExecutor
  • Android---- 一个完整的小项目(消防app)
  • XXX程序 详细说明
  • perl下载与安装教程【工具使用】
  • Chrome谷歌浏览器修改输入框自动填充样式
  • Azure CLI 进行磁盘加密
  • Java“牵手”根据关键词搜索(分类搜索)速卖通商品列表页面数据获取方法,速卖通API实现批量商品数据抓取示例
  • 商城-学习整理-高级-消息队列(十七)
  • Android Camere开发入门(1):初识Camera
  • hive表的全关联full join用法
  • PMP串讲
  • 最长回文子序列——力扣516
  • 从零实现深度学习框架——Transformer从菜鸟到高手(二)
  • docker监控平台FAST OS DOCKER --1
  • SpringBoot2.0集成WebSocket
  • Vue的Ajax请求-axios、前后端分离练习
  • Spring源码深度解析三 (MVC)
  • API接口漏洞利用及防御
  • 解决Spring mvc + JDK17@Resource无法使用的情况
  • 页面禁用鼠标右键,禁用F12打开开发者工具!!!
  • Android中使用JT808协议进行车载终端通信的实现和优化
  • 导出pdf
  • 【考研数学】线形代数第三章——向量 | 基本概念、向量组的相关性与线性表示
  • 温故知新之:接口和抽象类有什么区别?