当前位置: 首页 > news >正文

494. 目标和

494. 目标和

  • 原题链接:
  • 完成情况:
  • 解题思路:
    • 数组回溯法
    • 动态规划
  • 参考代码:
    • 数组回溯法
    • __494目标和__动态规划
  • 经验吸取

原题链接:

494. 目标和

https://leetcode.cn/problems/target-sum/description/

完成情况:

在这里插入图片描述

解题思路:

数组回溯法

backTrack(nums, target, index+1, curSum+nums[index]);
backTrack(nums, target, index+1, curSum-nums[index]);

动态规划

	 假设P是正子集,N是负子集 例如: 假设nums = [1, 2, 3, 4, 5],target = 3,一个可能的解决方案是+1-2+3-4+5 = 3 这里正子集P = [1, 3, 5]和负子集N = [2, 4]sum(P) - sum(N) = targetsum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)2 * sum(P) = target + sum(nums)因此,原来的问题已转化为一个求子集的和问题: 找到nums的一个子集 P,使得sum(P) = (target + sum(nums)) / 2,该式已经证明了target + sum(nums)必须是偶数,否则无解求子集的问题可以转化为01背包问题定义二维数组dp,其中dp[i][j]表示在数组下标为0...i的元素中任选元素,使得这些元素之和等于j的方案数

在这里插入图片描述

在这里插入图片描述

参考代码:

数组回溯法

package 西湖算法题解___中等题;public class __494目标和__数组回溯法 {int res = 0;public int findTargetSumWays(int[] nums, int target) {backTrack(nums,target,0,0);return res;}/**** @param nums      数组* @param target    目标值* @param index     索引位置* @param curSum    当前累计和*/private void backTrack(int[] nums, int target, int index, int curSum) {//1 <= nums.length <= 20//这种方法,属于递归,完全是因为数量级太小了//不然肯定算不出来的。if (index == nums.length){      //所有元素已经遍历完了if (curSum == target){res++;}}else{backTrack(nums, target, index+1, curSum+nums[index]);backTrack(nums, target, index+1, curSum-nums[index]);}}}

__494目标和__动态规划

package 西湖算法题解___中等题;public class __494目标和__评论区大佬 {/**题目介绍:就是说有一个数组,然后要在数组任意两两元素间插入一个【+】或者【-】最终要构成target这个值,问你有多少种拼接情况。*/public int findTargetSumWays(int[] nums, int target) {//很明显的一道dp题目,最终结果取决于过程叠加。/**假设P是正子集,N是负子集 例如: 假设nums = [1, 2, 3, 4, 5],target = 3,一个可能的解决方案是+1-2+3-4+5 = 3 这里正子集P = [1, 3, 5]和负子集N = [2, 4]sum(P) - sum(N) = targetsum(P) + sum(N) + sum(P) - sum(N) = target + sum(P) + sum(N)2 * sum(P) = target + sum(nums)因此,原来的问题已转化为一个求子集的和问题: 找到nums的一个子集 P,使得sum(P) = (target + sum(nums)) / 2,该式已经证明了target + sum(nums)必须是偶数,否则无解求子集的问题可以转化为01背包问题定义二维数组dp,其中dp[i][j]表示在数组下标为0...i的元素中任选元素,使得这些元素之和等于j的方案数*/int nLength = nums.length;//先去掉点特殊情况int sum = 0;for (int num:nums){sum += num;}// target + sum(nums)必须是偶数,否则无解     //要使target = nums[]的加减操作合,则它们必须同奇或者同偶// Math.abs(target) <= sum才有解       //目标值不能比绝对值求和还大//偶数判断还可以用   (lambda & 1) == 1   去判断if (((sum + target) & 1) == 1 || Math.abs(target) > sum){return 0;}int size = (sum + target) / 2;// 定义二维数组dp,其中dp[i][j]表示在数组下标为0...i的元素中任选元素,使得这些元素之和等于j的方案数int dp_findTargetSumWays [][] = new int[nLength][size+1];// 对dp[0][j]的初始化:除dp[0][0]和dp[0][nums[0]]外全部初始化为0// dp[0][0] = 1:nums[0]不为0时,此时dp[0][0]和dp[0][nums[0]]不重合,只有不选nums[0],其总和为0// dp[0][0] = 2:nums[0]为0时,此时dp[0][0]和dp[0][nums[0]]重合,选或者不选nums[0],其总和都为0if (nums[0] <= size){dp_findTargetSumWays[0][nums[0]] = 1;}if (nums[0] == 0){dp_findTargetSumWays[0][0] = 2;}else {dp_findTargetSumWays[0][0] = 1;}// 对dp[i][0]的初始化,可以放在下面整个dp的递推代码中for (int i = 1;i<nLength;i++){if (nums[i] == 0){//当nums[1]为0时,选择或者不选择nums[1]都可以使总和为0,//即dp[i][0] = dp[i - 1][0] + dp[i - 1][0 - nums[i]] = 2 * dp[i -1][0]dp_findTargetSumWays[i][0] = 2*dp_findTargetSumWays[i-1][0];}else{// 当nums[i]不为0时,只有不选nums[i]才可以使总和为0dp_findTargetSumWays[i][0] = dp_findTargetSumWays[i-1][0];}}// dp[i][j]递推:由于初始化时都将i = 0和j = 0的情况已经赋值,所以直接从i = 1和j = 1开始// 完全可以将上面对dp[i][0]的初始化放在此处,只需要将j从0开始for (int i=1;i<nLength;i++){for (int j=1;j<=size;j++){if (j>=nums[i]){dp_findTargetSumWays[i][j] = dp_findTargetSumWays[i-1][j] + dp_findTargetSumWays[i-1][j-nums[i]];}else{dp_findTargetSumWays[i][j] = dp_findTargetSumWays[i-1][j];}}}return dp_findTargetSumWays[nLength-1][size];}
}

经验吸取

  1. 首先,如果最终结果可以由其中的每一步过程,造成影响得来,那么就可以考虑用dp

  2. dp的难点就在于状态转移方程!!!如何将一个问题转化很重要!!!

  3. 转化形式应该为:
    在这里插入图片描述
    未知状态 = 已知确定目标值
    在这里插入图片描述

    dp数组过程推演情况。

http://www.lryc.cn/news/134331.html

相关文章:

  • C++学习笔记总结练习:C++编译过程详解
  • 嵌入式设备应用开发(qt界面开发)
  • pytest结合Excel实现接口自动化
  • 【LLM数据篇】预训练数据集+指令生成sft数据集
  • WebDAV之π-Disk派盘 + 一羽记帐
  • ChatGPT:记一次超复杂的KVM桌面系统连接问答记录
  • python-docx把dataframe表格添加到word文件中
  • Web AP—BOM 浏览器对象模型
  • Flink分流,合流,状态,checkpoint和精准一次笔记
  • c# 实现sql查询DataTable数据集 对接SqlSugar ORM
  • 记一次布尔盲注漏洞的挖掘与分析
  • C++11 新特性 ---- noexcept
  • 《Linux运维总结:Centos7.6之OpenSSH7.4p1升级版本至9.4p1》
  • 七夕节日表白:七大网页风格与其适用人群
  • 通达信指标公式16:使用BARSLAST函数写一个指标回测的思路
  • Jenkins自动化部署Vue项目
  • Android JNI打印logcat日志
  • 第28次CCF计算机软件能力认证(测试)
  • 九耶丨阁瑞钛伦特-Java高频面试题-请谈谈 ReadWriteLock 和 StampedLock
  • 【Linux操作系统】深入探索Linux系统编程中的信号集操作函数
  • [C初阶笔记]P2
  • C++并发编程学习01——hello concurrent world
  • 大数据扫盲(2): 数据分析BI与ETL的紧密关系——ETL是成功BI的先决条件
  • Java web 中的 jsp
  • uniapp 数组操作
  • 数据结构算法--4堆排序
  • C++学习系列之DLL动态库使用
  • Java实现钉钉企业内部应用机器和自定义机器人发送消息
  • 基于QT4的GPX文件编辑器开发
  • 树结构使用实例---实现数组和树结构的转换