当前位置: 首页 > news >正文

Codeforces EDU 151 Div.2

文章目录

    • A. Forbidden Integer
    • B. Come Together
    • C. Strong Password
    • D. Rating System
    • E. Boxes and Balls

A. Forbidden Integer

Problem - A - Codeforces
image.png

给定整数n,从1~k中选择除了x的数,使这些数之和为n,每个数可以选择无限次
爆搜,从k搜索到1,若当前搜索的数之和为n,返回true

#include <iostream>
using namespace std;const int N = 110;
int T, n, x, k;
int idx, p[N];bool dfs(int s, int start)
{if (start == -1) return false;if (s >= n) return s == n;for (int i = start; i >= 1; -- i ){if (i != x){p[idx ++ ] = i;if (dfs(s + i, start)) return true;idx -- ;}}return dfs(s, start - 1);
}int main()
{cin >> T;while ( T -- ){cin >> n >> k >> x;idx = 0;if (dfs(0, k)){puts("YES");cout << idx << endl;for (int i = 0; i < idx; ++ i ) cout << p[i] << ' ';cout << endl;}else puts("NO");}return 0;
}

B. Come Together

Problem - B - Codeforces
image.png

给定三个点,A为起点,BC为终点,从起点走到两个终点的最短路中,最长的公共路径长度是多少?
这是个我的错误思路:一开始以为是bfs最短路,想着在bfs的过程中记录路径
但是矩阵中没有障碍物,完全没有必要bfs,直接将起点于终点的横纵坐标之差相加,就是最短距离了
你可以发现,所有最短路中,无论怎么走,横向距离都是起点与终点的横坐标之差,当然纵向距离也是,所以有了以上结论
那么两条最短路的公共路径呢?将横纵方向分开来看,对于横坐标,若两者的终点都在起点的同一方向(都位于左边或左边),此时横向的最短距离等于横向距离离起点近的终点的横向距离,即 m i n ( x b , x c ) min(x_b, x_c) min(xb,xc)。若两者位于起点的左右两边,那么在横向距离上两者没有公共路径。同理,纵向距离也是如此

#include <iostream>
using namespace std;typedef long long LL;
LL T, xa, ya, xb, yb, xc, yc;int main()
{cin >> T;while ( T -- ){int ans = 0;cin >> xa >> ya >> xb >> yb >> xc >> yc;xb -= xa, yb -= ya, xc -= xa, yc -= ya; // 以a为源点if ((xb > 0) == (xc > 0)) ans += min(abs(xb), abs(xc));if ((yb > 0) == (yc > 0)) ans += min(abs(yb), abs(yc));cout << ans + 1 << endl;}return 0;
}

debug:若用xb * xc > 0判断两点是否位于源点的同一方向,相乘会爆int


C. Strong Password

Problem - C - Codeforces
image.png

题目只要求输出YES和NO,没有要求输出具体的序列,所以这题不用想得太复杂
比较暴力的解法是枚举所有可能的序列,用爆搜判断该序列是否为s的子序列,只要有一个序列不是s的子序列就输出YES,否则输出NO
考虑暴力如何优化?两个优化方向:枚举所有可能的序列和爆搜判断

枚举所有可能的序列不太好优化
关于爆搜的优化:由于s中只有字符19,可以预处理出第i个字符右边(包括第i个字符),19第一次出现的位置,若没有出现,位置用无穷表示
枚举t串时,t串的每个字符都有一个范围,假设t串的字符在s串中出现的下标为 x x x,若 x x x越大,s串中用来组成t串的字符就越少,出现相同子序列的概率就越低
以上贪心策略用反证法可以证明正确性,因此对于t串的每个字符,根据每个字符的范围以及字符在s串中出现的位置,确定一个下标最大的字符即可
遇到无穷直接输出YES即可

#include <iostream>
#include <cstring>
using namespace std;const int N = 3e5 + 10, M = 15;
char s[N], l[M], r[M];
int last[N][M], T, m;int main()
{ios::sync_with_stdio(false);cin.tie(nullptr);cin >> T;while ( T -- ){cin >> s >> m >> l >> r;int len = strlen(s);memset(last[len], 0x3f, sizeof last[len]);for (int i = len - 1; i >= 0; -- i ){memcpy(last[i], last[i + 1], sizeof last[i + 1]);last[i][s[i] - '0'] = i;}int cur = -1; // cur和next为搜索s串的双指针for (int i = 0; i < m && cur != 0x3f3f3f3f; ++ i ){int next = 0;for (int j = l[i] - '0'; j <= r[i] - '0'; ++ j ){next = max(next, last[cur + 1][j]);}   cur = next;}cout << (cur == 0x3f3f3f3f ? "YES\n" : "NO\n");}return 0;
}

debug:如果memset(last[len], 0x3f, sizeof last[len])写成memset(last, 0x3f, sizeof last),直接memset整个last数组会TLE的,考虑到预处理的顺序,只要初始化最后一个一维数组即可last[len]


D. Rating System

Problem - D - Codeforces
image.png

看着像是求最大子段和,一开始也是这么想的,但是仔细一想却是不对的
参考视频:最小子段和 动态规划【Codeforces EDU 151】_哔哩哔哩_bilibili

image.png

确定一个k值,使分数大于等于k值后不会小于k值,也就是说:抵消分数递达k之后的减分行为
问k为多少,最后的分数最高?显然,抵消的分数越多,最后的分数越高
题目给定每一次分数的变化,即用 a i a_i ai的正负表示分数的加减变化。若要抵消最多的减分,就要找出数组中的最小连续子段和 [ a i , a r ] [a_i, a_r] [ai,ar],再将k设置为 s u m ( a 0 , a i − 1 ) sum(a_0, a_{i-1}) sum(a0,ai1)
通常求最小子段和,都是使用dp,然而这题求的并不是具体的最小子段和,这题求的是最小子段和的左区间,以及一个前缀和信息。因此只需要在求前缀和的过程中,维护最小子段和的左区间信息即可

#include <iostream>
using namespace std;typedef long long LL;
const int N = 3e5 + 10;
int a[N], T;int main()
{cin >> T;while ( T -- ){int n;cin >> n;for (int i = 0; i < n; ++ i ) cin >> a[i];LL ans = 0, sum = 0, cmax = 0, k;for (int i = 0; i < n; ++ i ){sum += a[i];cmax = max(cmax, sum);LL val = cmax - sum;if (ans < val){ans = val;k = cmax;}}cout << k << endl;}return 0;
}

E. Boxes and Balls

Problem - E - Codeforces
image.png

数组中有n个0和1,至少有一个0和1,每次选择一对相邻的0和1进行交换,问经过k次交换后,存在多少种不同的数组?

有些难,以后再来补

http://www.lryc.cn/news/132988.html

相关文章:

  • V2board缓存投毒漏洞复现
  • 2023面试八股文 ——Java基础知识
  • 在linux系统中修改mysql数据目录
  • ORB-SLAM2学习笔记9之图像帧Frame
  • 面试热题(不同的二分搜索树)
  • MybatisPlus整合p6spy组件SQL分析
  • 项目实战 — 博客系统③ {功能实现}
  • 卷积神经网络全解:(AlexNet/VGG/ GoogLeNet/LeNet/ResNet/卷积/激活/池化/全连接)、现代卷积神经网络、经典卷积神经网络
  • WDM 模型(Windows Driver Model)简述
  • 【算法刷题之数组篇(1)】
  • 【数据挖掘】使用 Python 分析公共数据【01/10】
  • html怎么插入视频?视频如何插入页面
  • 游戏服务端性能测试
  • 【使用Zookeeper当作注册中心】自己定制负载均衡常见策略
  • 设计模式十七:迭代器模式(Iterator Pattern)
  • Python制作爱心并打包成手机端可执行文件
  • 使用docker-compose.yml快速搭建开发、部署环境(nginx、tomcat、mysql、jar包、各种程序)以及多容器通信和统一配置
  • 管理类联考——逻辑——真题篇——按知识分类——汇总篇——二、论证逻辑——支持加强——第三节——分类3——类比题干支持
  • 搜索旋转排序数组
  • Steam搬砖项目:最长久稳定的副业!
  • 最小化安装移动云大云操作系统--BCLinux-R8-U8-Server-x86_64-230802版
  • 神经网络基础-神经网络补充概念-05-导数
  • kubernetes — 安装Ingress
  • SSR使用HTTPS
  • Spring Boot中使用validator如何实现接口入参自动检验
  • thinkphp 5 实现UNION ALL 3个联表查询,并且带上搜索条件,名称,时间,手机号
  • React 之 Router - 路由详解
  • 框架分析(1)-IT人必须会
  • 前端面试的游览器部分(7)每天10个小知识点
  • 认识Junit