当前位置: 首页 > news >正文

Greiner–Hormann裁剪算法深度探索:C++实现与应用案例

介绍

在计算几何中,裁剪是一个核心的主题。特别是,多边形裁剪已经被广泛地应用于计算机图形学,地理信息系统和许多其他领域。Greiner-Hormann裁剪算法是其中之一,提供了一个高效的方式来计算两个多边形的交集、并集等。在本文中,我们将深入探讨这一算法,并为您提供一个基于C++的实现。


算法概述

Greiner-Hormann算法基于边界交点的概念,即两个多边形的交点。算法的关键思想是找到这些交点,并根据需要合并多边形的顶点。

  1. 找到所有的交点:遍历多边形A和B的所有边,找到它们的交点。
  2. 排序交点:按照它们在多边形边上的位置对交点进行排序。
  3. 连接交点:使用链接交点来形成新的多边形。
  4. 得到结果多边形:得到交集、并集或差集,取决于所需的操作。

C++实现

为了简单起见,我们假设点是一个简单的结构,并有一个函数来计算两条线段的交点。

struct Point {double x, y;Point(double x = 0, double y = 0) : x(x), y(y) {}
};bool findIntersection(Point p1, Point q1, Point p2, Point q2, Point &intersec) {// ... (交点的计算代码)
}

为了表示多边形,我们使用点的列表:

using Polygon = std::vector<Point>;

现在,让我们开始寻找两个多边形之间的所有交点。

std::vector<Point> findIntersections(const Polygon &polyA, const Polygon &polyB) {std::vector<Point> intersections;for(size_t i = 0; i < polyA.size(); i++) {Point p1 = polyA[i];Point q1 = (i == polyA.size() - 1) ? polyA[0] : polyA[i + 1];for(size_t j = 0; j < polyB.size(); j++) {Point p2 = polyB[j];Point q2 = (j == polyB.size() - 1) ? polyB[0] : polyB[j + 1];Point intersec;if(findIntersection(p1, q1, p2, q2, intersec)) {intersections.push_back(intersec);}}}return intersections;
}

此代码片段首先初始化一个空的交点列表。然后,它遍历polyApolyB的每条边,使用findIntersection函数来确定它们是否有交点。如果找到交点,它会添加到交点列表中。

排序交点

为了确保算法的正确性,我们需要按照它们在多边形上的位置对交点进行排序。这确保了当我们形成新的多边形时,交点被正确地处理。

void sortIntersections(Polygon &poly, std::vector<Point> &intersections) {std::sort(intersections.begin(), intersections.end(), [&poly](const Point &a, const Point &b) -> bool {// 为每个交点找到其在多边形上的位置size_t posA = std::distance(poly.begin(), std::find(poly.begin(), poly.end(), a));size_t posB = std::distance(poly.begin(), std::find(poly.begin(), poly.end(), b));return posA < posB;});
}

此函数接受多边形和其交点列表作为参数,然后按照交点在多边形上的位置进行排序。

连接交点以形成新的多边形

一旦我们有了排序后的交点,我们就可以开始构造新的多边形。

Polygon constructNewPolygon(const Polygon &polyA, const Polygon &polyB, const std::vector<Point> &intersections) {Polygon result;// 使用一个标记数组来跟踪哪些交点已经被处理std::vector<bool> visited(intersections.size(), false);// 开始于多边形A的第一个点result.push_back(polyA[0]);for (size_t i = 1; i <= polyA.size(); i++) {Point current = (i == polyA.size()) ? polyA[0] : polyA[i];// 查找是否有交点auto it = std::find(intersections.begin(), intersections.end(), current);if (it != intersections.end() && !visited[std::distance(intersections.begin(), it)]) {// 标记交点为已访问visited[std::distance(intersections.begin(), it)] = true;// 将交点添加到结果多边形中result.push_back(*it);// 转到另一个多边形并遍历其边,直到遇到另一个交点const Polygon &otherPoly = (polyA == polyB) ? polyB : polyA;size_t j = std::distance(otherPoly.begin(), std::find(otherPoly.begin(), otherPoly.end(), *it));do {j = (j + 1) % otherPoly.size();result.push_back(otherPoly[j]);} while (std::find(intersections.begin(), intersections.end(), otherPoly[j]) == intersections.end());} else {result.push_back(current);}}return result;
}

这个函数首先初始化了一个空的多边形和一个标记数组,用于跟踪哪些交点已经被处理。然后,它遍历polyA的每个顶点,并检查它是否是一个交点。如果是,并且还没有被访问过,它将开始遍历polyB,直到找到另一个交点为止。

结论和进一步的应用

从上面的C++实现中,我们可以看到Greiner-Hormann裁剪算法是如何工作的。这种算法的优点是它对于复杂的多边形也能高效工作,而且它的理论基础使得它可以很容易地适应各种应用场景。

例如,此算法不仅限于2D平面上的裁剪。通过在三维空间中考虑多边形,或者在N维空间中进行一些扩展,我们可以将此方法用于更高维度的空间。

此外,这种算法在图形渲染、地理信息系统、碰撞检测等领域都有应用。其准确性和效率使它成为处理这些问题的理想选择。

总结

Greiner-Hormann裁剪算法为我们提供了一个强大的工具,可以用来解决多边形裁剪中的各种问题。不仅如此,由于其底层原理和结构的普遍性,它可以被扩展到多种不同的应用中。上面提供的C++实现只是开始,您可以根据需要对其进行扩展或修改,使其适应您的特定需求。

感谢您的耐心阅读!希望这篇文章为您提供了有价值的信息和启示。

http://www.lryc.cn/news/130064.html

相关文章:

  • Automatically Correcting Large Language Models
  • 【学习FreeRTOS】第8章——FreeRTOS列表和列表项
  • 分布式图数据库 NebulaGraph v3.6.0 正式发布,强化全文索引能力
  • 在 ubuntu 18.04 上使用源码升级 OpenSSH_7.6p1到 OpenSSH_9.3p1
  • python中可以处理word文档的模块:docx模块
  • TikTok或将于8月底关闭半闭环、速卖通或将推出“半托管”模式
  • 《凤凰架构》第二章——访问远程服务
  • 【Diffusion】李宏毅2023机器学习Diffusion笔记
  • CloudEvents—云原生事件规范
  • 神经网络基础-神经网络补充概念-51-局部最优问题
  • 深度学习中,什么是batch-size?如何设置?
  • [保研/考研机试] KY26 10进制 VS 2进制 清华大学复试上机题 C++实现
  • JSP-学习笔记
  • Golang协程,通道详解
  • unity 之 Vector 数据类型
  • 私密数据采集:隧道爬虫IP技术的保密性能力探究
  • 使用git rebase 之后的如何恢复到原始状态
  • matlab相机标定知识整理
  • win11安装ubuntu 子系统安装过程及注意事项
  • torch.cat((A,B),dim=1)解析
  • apache配置安全证书https踩坑记录
  • SQL Server Express 自动备份方案
  • Docker资源控制
  • 微服务中间件-分布式缓存Redis
  • java面试强基(16)
  • Python可视化在量化交易中的应用(13)_Seaborn直方图
  • NOIP 2006 普及组 第二题 开心的金明
  • 「UG/NX」Block UI 指定点SpecifyPoint
  • Linux Shell如果ping失败就重启网卡(详解)
  • 每天一道leetcode:剑指 Offer 13. 机器人的运动范围(中等广度优先遍历剪枝)