用纯C语言实现3D空间中的点坐标转化为屏幕二维点坐标,包含主视图、侧视图、俯视图、正等轴投影
要实现3D空间中的点坐标转换为屏幕二维点坐标,需要进行透视变换和投影变换。以下是一些基本的思路和示例代码,可以用于实现主视图、侧视图、俯视图、正等轴投影。
1. 主视图投影
主视图投影是指以一个点作为视点,从一个方向观察物体,投影到一个平面上。通常情况下,主视图的观察方向是从正面,也就是Z轴负方向。投影平面一般是平行于X-Y平面。
具体实现可以通过以下步骤完成:
- 定义观察点坐标和投影平面距离
- 对3D坐标进行透视变换
- 对透视变换后的坐标进行投影变换
- 将投影后的坐标映射到屏幕上
示例代码:
int x_2d = (int) (x_3d / (z_3d - view_point_z) * distance_to_projection_plane);
int y_2d = (int) (y_3d / (z_3d - view_point_z) * distance_to_projection_plane);
2. 侧视图投影
侧视图投影是指以一个点作为视点,从一个方向观察物体,投影到一个平面上。通常情况下,侧视图的观察方向是从侧面,也就是X轴正方向。投影平面一般是平行于Y-Z平面。
具体实现可以通过以下步骤完成:
- 定义观察点坐标和投影平面距离
- 对3D坐标进行透视变换
- 对透视变换后的坐标进行投影变换
- 将投影后的坐标映射到屏幕上
示例代码:
int x_2d = (int) (y_3d / (x_3d - view_point_x) * distance_to_projection_plane);
int y_2d = (int) (z_3d / (x_3d - view_point_x) * distance_to_projection_plane);
3. 俯视图投影
俯视图投影是指以一个点作为视点,从一个方向观察物体,投影到一个平面上。通常情况下,俯视图的观察方向是从上方,也就是Y轴正方向。投影平面一般是平行于X-Z平面。
具体实现可以通过以下步骤完成:
- 定义观察点坐标和投影平面距离
- 对3D坐标进行透视变换
- 对透视变换后的坐标进行投影变换
- 将投影后的坐标映射到屏幕上
以下是一个简单的示例代码,用于将3D空间中的点坐标转化为屏幕二维点坐标。这里包括了主视图、侧视图、俯视图、正等轴投影的实现。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>#define SCREEN_WIDTH 640
#define SCREEN_HEIGHT 480typedef struct {double x, y, z;
} Point3D;typedef struct {int x, y;
} Point2D;void project_ortho(Point3D point_3d, Point2D *point_2d, double distance_to_projection_plane) {point_2d->x = (int) point_3d.x;point_2d->y = (int) point_3d.y;
}void project_isometric(Point3D point_3d, Point2D *point_2d, double distance_to_projection_plane) {point_2d->x = (int) ((point_3d.x - point_3d.z) * cos(30 * M_PI / 180));point_2d->y = (int) ((point_3d.y - (point_3d.x + point_3d.z) * sin(30 * M_PI / 180)) * cos(30 * M_PI / 180));
}void project_main(Point3D point_3d, Point2D *point_2d, Point3D view_point, double distance_to_projection_plane) {double z_3d = point_3d.z - view_point.z;point_2d->x = (int) (point_3d.x - view_point.x) * distance_to_projection_plane / z_3d + SCREEN_WIDTH / 2;point_2d->y = (int) (point_3d.y - view_point.y) * distance_to_projection_plane / z_3d + SCREEN_HEIGHT / 2;
}void project_side(Point3D point_3d, Point2D *point_2d, Point3D view_point, double distance_to_projection_plane) {double x_3d = point_3d.x - view_point.x;point_2d->x = (int) (point_3d.y - view_point.y) * distance_to_projection_plane / x_3d + SCREEN_WIDTH / 2;point_2d->y = (int) (point_3d.z - view_point.z) * distance_to_projection_plane / x_3d + SCREEN_HEIGHT / 2;
}void project_top(Point3D point_3d, Point2D *point_2d, Point3D view_point, double distance_to_projection_plane) {double y_3d = point_3d.y - view_point.y;point_2d->x = (int) (point_3d.x - view_point.x) * distance_to_projection_plane / y_3d + SCREEN_WIDTH / 2;point_2d->y = (int) (point_3d.z - view_point.z) * distance_to_projection_plane / y_3d + SCREEN_HEIGHT / 2;
}int main() {// Define the 3D points of a cubePoint3D cube[8] = {{-50, -50, -50},{50, -50, -50},{50, 50, -50},{-50, 50, -50},{50, -50, 50},{50, 50, 50},{-50, 50, 50},{-50, -50, 50},};// Define the view point for the main, side, and top projectionsPoint3D main_view_point = {0, 0, 200};Point3D side_view_point = {-200, 0, 0};Point3D top_view_point = {0, 200, 0};// Define the distance from the projection plane for the orthogonal and isometric projectionsdouble distance_to_ortho_projection_plane = 200;double distance_to_isometric_projection_plane = 200 / cos(30 * M_PI / 180);// Project the 3D points to 2D points for each projectionPoint2D main_projection[8];Point2D side_projection[8];Point2D top_projection[8];Point2D ortho_projection[8];Point2D iso_projection[8];int i;for (i = 0; i < 8; i++) {project_main(cube[i], &main_projection[i], main_view_point, distance_to_ortho_projection_plane);project_side(cube[i], &side_projection[i], side_view_point, distance_to_ortho_projection_plane);project_top(cube[i], &top_projection[i], top_view_point, distance_to_ortho_projection_plane);project_ortho(cube[i], &ortho_projection[i], distance_to_ortho_projection_plane);project_isometric(cube[i], &iso_projection[i], distance_to_isometric_projection_plane);}// Draw the 2D projections// ...// Your code to draw the projections goes here// ...return 0;
}