当前位置: 首页 > news >正文

Hands on RL 之 Off-policy Maximum Entropy Actor-Critic (SAC)

Hands on RL 之 Off-policy Maximum Entropy Actor-Critic (SAC)

文章目录

  • Hands on RL 之 Off-policy Maximum Entropy Actor-Critic (SAC)
    • 1. 理论基础
      • 1.1 Maximum Entropy Reinforcement Learning, MERL
      • 1.2 Soft Policy Evaluation and Soft Policy Improvement in SAC
      • 1.3 Two Q Value Neural Network
      • 1.4 Tricks
      • 1.5 Pesudocode
    • 2. 代码实现
      • 2.1 SAC处理连续动作空间
      • 2.2 SAC处理离散动作空间
    • Reference

​ Soft actor-critic方法又被称为Off-policy maximum entropy actor-critic algorithm。

1. 理论基础

1.1 Maximum Entropy Reinforcement Learning, MERL

​ 在MERL原论文中,引入了熵的概念,熵定义如下:

随机变量 x x x符合 P P P的概率分布,那么随机变量 x x x的熵 H ( P ) \mathcal{H}(P) H(P)
H ( P ) = E x ∼ P [ − log ⁡ p ( x ) ] \mathcal{H}(P)=\mathbb{E}_{x\sim P}[-\log p(x)] H(P)=ExP[logp(x)]
标准的RL算法的目标是能够找到最大化累计收益的策略
π std ∗ = arg ⁡ max ⁡ π ∑ t E ( s t , a t ) ∼ ρ π [ r ( s t , a t ) ] \pi^*_{\text{std}} = \arg \max_\pi \sum_t \mathbb{E}_{(s_t,a_t)\sim \rho_\pi}[r(s_t, a_t)] πstd=argπmaxtE(st,at)ρπ[r(st,at)]
引入了熵最大化的RL算法的目标是
π M E R L ∗ = arg ⁡ max ⁡ π ∑ t E ( s t , a t ) ∼ ρ π [ r ( s t , a t ) + α H ( π ( ⋅ ∣ s t ) ) ] \pi^*_{MERL} = \arg\max_\pi \sum_t \mathbb{E}_{(s_t,a_t)\sim\rho_\pi}[r(s_t,a_t) + \alpha \mathcal{H}(\pi(\cdot|s_t))] πMERL=argπmaxtE(st,at)ρπ[r(st,at)+αH(π(st))]
其中, ρ π \rho_\pi ρπ表示在策略 π \pi π下状态空间对的概率分布, α \alpha α是温度系数,用于调节对熵的重视程度。

类似的,我们也可以在RL的动作值函数,和状态值函数中同样引入熵的概念。

标准的RL算法的值函数
standard Q function: Q π ( s , a ) = E s t , a t ∼ ρ π [ ∑ t = 0 ∞ γ t r ( s t , a t ) ∣ s 0 = s , a 0 = a ] standard V function: V π ( s ) = E s t , a t ∼ ρ π [ ∑ t = 0 ∞ γ t r ( s t , a t ) ∣ s 0 = s ] \begin{aligned} \text{standard Q function:} \quad Q^\pi(s,a) & = \mathbb{E}_{s_t,a_t\sim\rho_\pi}[\sum_{t=0}^\infty \gamma^t r(s_t,a_t)|s_0=s, a_0=a] \\ \text{standard V function:} \quad V^\pi(s) & =\mathbb{E}_{s_t,a_t\sim\rho_\pi}[\sum_{t=0}^\infty \gamma^t r(s_t,a_t)|s_0=s] \end{aligned} standard Q function:Qπ(s,a)standard V function:Vπ(s)=Est,atρπ[t=0γtr(st,at)s0=s,a0=a]=Est,atρπ[t=0γtr(st,at)s0=s]

根据MERL的目标函数,在值函数中引入熵的概念之后就获得了Soft Value Function, SVF
Soft Q function: Q soft π ( s , a ) = E s t , a t ∼ ρ π [ ∑ t = 0 ∞ γ t r ( s t , a t ) + α ∑ t = 1 ∞ γ t H ( π ( ⋅ ∣ s t ) ) ∣ s 0 = s , a 0 = a ] Soft V function: V soft π ( s ) = E s t , a t ∼ ρ π [ ∑ t = 0 ∞ γ t ( r ( s t , a t ) + α H ( π ( ⋅ ∣ s t ) ) ) ∣ s 0 = s ] \begin{aligned} \text{Soft Q function:} \quad Q_{\text{soft}}^\pi(s,a) & = \mathbb{E}_{s_t,a_t\sim\rho_\pi}[\sum_{t=0}^\infty \gamma^t r(s_t,a_t) + \alpha \sum_{t=1}^\infty\gamma^t\mathcal{H} (\pi(\cdot|s_t)) |s_0=s, a_0=a] \\ \text{Soft V function:} \quad V_{\text{soft}}^\pi(s) & =\mathbb{E}_{s_t,a_t\sim\rho_\pi}[\sum_{t=0}^\infty \gamma^t \Big( r(s_t,a_t) + \alpha \mathcal{H} (\pi(\cdot|s_t)) \Big)|s_0=s] \end{aligned} Soft Q function:Qsoftπ(s,a)Soft V function:Vsoftπ(s)=Est,atρπ[t=0γtr(st,at)+αt=1γtH(π(st))s0=s,a0=a]=Est,atρπ[t=0γt(r(st,at)+αH(π(st)))s0=s]

观察上式我们就可以获得Soft Bellman Equation
Q soft π ( s , a ) = E s ′ ∼ p ( s ′ ∣ s , a ) a ′ ∼ π [ r ( s , a ) + γ ( Q soft π ( s ′ , a ′ ) + α H ( π ( ⋅ ∣ s ′ ) ) ) ] = E s ′ ∼ p ( s ′ ∣ s , a ) [ r ( s , a ) + γ V soft π ( s ) ] \begin{aligned} Q_{\text{soft}}^\pi(s,a) & = \mathbb{E}_{s^\prime \sim p(s^\prime|s,a)\\ a^\prime\sim \pi}[r(s,a) + \gamma \Big( Q_{\text{soft}}^\pi(s^\prime,a^\prime) + \alpha \mathcal{H}(\pi(\cdot|s^\prime)) \Big)] \\ & = \mathbb{E}_{s^\prime\sim p(s^\prime|s,a)} [r(s,a) + \gamma V_{\text{soft}}^\pi(s)] \end{aligned} Qsoftπ(s,a)=Esp(ss,a)aπ[r(s,a)+γ(Qsoftπ(s,a)+αH(π(s)))]=Esp(ss,a)[r(s,a)+γVsoftπ(s)]

V soft π ( s ) = E s t , a t ∼ ρ π [ ∑ t = 0 ∞ γ t ( r ( s t , a t ) + α H ( π ( ⋅ ∣ s t ) ) ) ∣ s 0 = s ] = E s t , a t ∼ ρ π [ ∑ t = 0 ∞ γ t r ( s t , a t ) + α ∑ t = 1 ∞ γ t H ( π ( ⋅ ∣ s t ) ) + α H ( π ( ⋅ ∣ s t ) ∣ s 0 = s ] = E s t , a t ∼ ρ π [ Q soft π ( s , a ) ∣ s 0 = s , a 0 = a ] + α H ( π ( ⋅ ∣ s t ) ) = E a ∼ π [ Q soft π ( s , a ) − α log ⁡ π ( a ∣ s ) ] \begin{aligned} V_{\text{soft}}^\pi(s) & = \mathbb{E}_{s_t,a_t\sim\rho_\pi}[\sum_{t=0}^\infty \gamma^t \Big( r(s_t,a_t) + \alpha \mathcal{H} (\pi(\cdot|s_t)) \Big)|s_0=s] \\ & = \mathbb{E}_{s_t,a_t\sim\rho_\pi}[\sum_{t=0}^\infty \gamma^t r(s_t,a_t) + \alpha \sum_{t=1}^\infty\gamma^t\mathcal{H} (\pi(\cdot|s_t)) + \alpha \mathcal{H}(\pi(\cdot|s_t)|s_0=s] \\ & = \mathbb{E}_{s_t,a_t\sim\rho_\pi}[Q_{\text{soft}}^\pi(s,a)|s_0=s,a_0=a] + \alpha \mathcal{H}(\pi(\cdot|s_t)) \\ & = \textcolor{blue}{\mathbb{E}_{a\sim\pi}[Q_{\text{soft}}^\pi(s,a) - \alpha \log \pi(a|s)]} \end{aligned} Vsoftπ(s)=Est,atρπ[t=0γt(r(st,at)+αH(π(st)))s0=s]=Est,atρπ[t=0γtr(st,at)+αt=1γtH(π(st))+αH(π(st)s0=s]=Est,atρπ[Qsoftπ(s,a)s0=s,a0=a]+αH(π(st))=Eaπ[Qsoftπ(s,a)αlogπ(as)]

1.2 Soft Policy Evaluation and Soft Policy Improvement in SAC

soft Q function的值迭代公式
Q soft π ( s , a ) = E s ′ ∼ p ( s ′ ∣ s , a ) a ′ ∼ π [ r ( s , a ) + γ ( Q soft π ( s ′ , a ′ ) + α H ( π ( ⋅ ∣ s ′ ) ) ) ] = E s ′ ∼ p ( s ′ ∣ s , a ) [ r ( s , a ) + γ V soft π ( s ) ] \begin{align} Q_{\text{soft}}^\pi(s,a) & = \mathbb{E}_{s^\prime \sim p(s^\prime|s,a)\\ a^\prime\sim \pi}[r(s,a) + \gamma \Big( Q_{\text{soft}}^\pi(s^\prime,a^\prime) + \alpha \mathcal{H}(\pi(\cdot|s^\prime)) \Big)] \tag{1.1} \\ & = \mathbb{E}_{s^\prime\sim p(s^\prime|s,a)} [r(s,a) + \gamma V_{\text{soft}}^\pi(s)] \tag{1.2} \end{align} Qsoftπ(s,a)=Esp(ss,a)aπ[r(s,a)+γ(Qsoftπ(s,a)+αH(π(s)))]=Esp(ss,a)[r(s,a)+γVsoftπ(s)](1.1)(1.2)

soft V function的值迭代公式

V soft π ( s ) = E a ∼ π [ Q soft π ( s , a ) − α log ⁡ π ( a ∣ s ) ] (1.3) V_{\text{soft}}^\pi(s)= \mathbb{E}_{a\sim\pi}[Q_{\text{soft}}^\pi(s,a) - \alpha \log \pi(a|s)] \tag{1.3} Vsoftπ(s)=Eaπ[Qsoftπ(s,a)αlogπ(as)](1.3)

在SAC中如果我们只打算维持一个Q值函数,那么使用式子 ( 1 , 1 ) (1,1) (1,1)进行值迭代即可,

如果需要同时维持Q,V两个函数,那么使用式子 ( 1 , 2 ) , ( 1 , 3 ) (1,2),(1,3) (1,2),(1,3)进行值迭代。

下面直接给出训练中的损失函数

V值函数的损失函数

J V ( ψ ) = E s t ∼ D [ 1 2 ( V ψ ( s t ) − E a t ∼ π ϕ [ Q θ ( s t , a t ) − log ⁡ π ϕ ( a t ∣ s t ) ] ) 2 ] J_{V(\psi)} = \mathbb{E}_{s_t\sim\mathcal{D}} \Big[\frac{1}{2}(V_{\psi}(s_t) - \mathbb{E}_{a_t\sim\pi_{\phi}}[Q_\theta(s_t,a_t)- \log \pi_\phi(a_t|s_t)])^2 \Big] JV(ψ)=EstD[21(Vψ(st)Eatπϕ[Qθ(st,at)logπϕ(atst)])2]

Q值函数的损失函数

J Q ( θ ) = E ( s t , a t ) ∼ D [ 1 2 ( Q θ ( s t , a t ) − Q ^ ( s t , a t ) ) ] Q ^ ( s t , a t ) = r ( s t , a t ) + γ E s t + 1 ∼ p [ V ψ ( s t + 1 ) ] Q ^ ( s t , a t ) = r ( s t , a t ) + γ Q θ ( s t + 1 , a t + 1 ) J_{Q(\theta)} = \mathbb{E}_{(s_t,a_t)\sim\mathcal{D}} \Big[ \frac{1}{2}\Big( Q_\theta(s_t,a_t) - \hat{Q}(s_t,a_t) \Big) \Big] \\ \hat{Q}(s_t,a_t) = r(s_t,a_t) + \gamma \mathbb{E}_{s_{t+1}\sim p}[V_{\psi}(s_{t+1})] \\ \hat{Q}(s_t,a_t) = r(s_t,a_t) + \gamma Q_\theta(s_{t+1},a_{t+1}) JQ(θ)=E(st,at)D[21(Qθ(st,at)Q^(st,at))]Q^(st,at)=r(st,at)+γEst+1p[Vψ(st+1)]Q^(st,at)=r(st,at)+γQθ(st+1,at+1)

策略 π \pi π的损失函数

J π ( ϕ ) = E s t ∼ D [ D K L ( π ϕ ( ⋅ ∣ s t ) ∣ ∣ exp ⁡ ( Q θ ( s t , ⋅ ) ) Z θ ( s t ) ) ] J_\pi(\phi) = \mathbb{E}_{s_t\sim \mathcal{D}} \Big[ \mathbb{D}_{KL}\Big( \pi_\phi(\cdot|s_t) \big|\big| \frac{\exp(Q_\theta(s_t,\cdot))}{Z_\theta(s_t)} \Big) \Big] Jπ(ϕ)=EstD[DKL(πϕ(st) Zθ(st)exp(Qθ(st,)))]

其中, Z θ ( s t ) Z_\theta(s_t) Zθ(st)是分配函数 (partition function)

KL散度的定义如下

​ 假设对随机变量 ξ \xi ξ,存在两个概率分布P和Q,其中P是真实的概率分布,Q是较容易获得的概率分布。如果 ξ \xi ξ是离散的随机变量,那么定义从P到Qd KL散度为

D K L ( P ∣ ∣ Q ) = ∑ i P ( i ) ln ⁡ ( P ( i ) Q ( i ) ) \mathbb{D}_{KL}(P\big|\big|Q) = \sum_i P(i)\ln(\frac{P(i)}{Q(i)}) DKL(P Q)=iP(i)ln(Q(i)P(i))

如果 ξ \xi ξ是连续变量,则定义从P到Q的KL散度为

D K L ( P ∣ ∣ Q ) = ∫ − ∞ ∞ p ( x ) ln ⁡ ( p ( x ) q ( x ) ) d x \mathbb{D}_{KL}(P\big|\big|Q) = \int^\infty_{-\infty}p(\mathbb{x})\ln(\frac{p(\mathbb{x})}{q(\mathbb{x})}) d\mathbb{x} DKL(P Q)=p(x)ln(q(x)p(x))dx

那么根据离散的KL散度定义,我们可以将策略 π \pi π的损失函数展开如下

J π ( ϕ ) = E s t ∼ D [ D K L ( π ϕ ( ⋅ ∣ s t ) ∣ ∣ exp ⁡ ( Q θ ( s t , ⋅ ) ) Z θ ( s t ) ) ] = E s t ∼ D [ ∑ π ϕ ( ⋅ ∣ s t ) ln ⁡ ( π ϕ ( ⋅ ∣ s t ) Z θ ( s t ) exp ⁡ ( Q θ ( s t , ⋅ ) ) ) ] = E s t ∼ D , a t ∼ π ϕ [ ln ⁡ ( π ϕ ( ⋅ ∣ s t ) + ln ⁡ ( Z θ ( s t ) ) − Q θ ( s t , ⋅ ) ] = E s t ∼ D , a t ∼ π ϕ [ ln ⁡ ( π ϕ ( ⋅ ∣ s t ) ) − Q θ ( s t , ⋅ ) ] \begin{align} J_\pi(\phi) & = \mathbb{E}_{s_t\sim \mathcal{D}} \Big[ \mathbb{D}_{KL}\Big( \pi_\phi(\cdot|s_t) \big|\big| \frac{\exp(Q_\theta(s_t,\cdot))}{Z_\theta(s_t)} \Big) \Big] \\ & = \mathbb{E}_{s_t\sim\mathcal{D}} \Big[ \sum\pi_\phi(\cdot|s_t) \ln(\frac{\pi_\phi(\cdot|s_t)Z_\theta(s_t)}{\exp(Q_\theta(s_t,\cdot))}) \Big] \\ & = \mathbb{E}_{s_t\sim\mathcal{D}, a_t\sim \pi_\phi} \Big[ \ln(\pi_\phi(\cdot|s_t) + \ln(Z_\theta(s_t)) - Q_\theta(s_t,\cdot) \Big] \\ & = \textcolor{blue}{\mathbb{E}_{s_t\sim\mathcal{D}, a_t\sim \pi_\phi} \Big[ \ln(\pi_\phi(\cdot|s_t)) - Q_\theta(s_t,\cdot) \Big]} \tag{1.4} \end{align} Jπ(ϕ)=EstD[DKL(πϕ(st) Zθ(st)exp(Qθ(st,)))]=EstD[πϕ(st)ln(exp(Qθ(st,))πϕ(st)Zθ(st))]=EstD,atπϕ[ln(πϕ(st)+ln(Zθ(st))Qθ(st,)]=EstD,atπϕ[ln(πϕ(st))Qθ(st,)](1.4)

最后一步是因为,分配函数 Z θ Z_\theta Zθ与策略 π \pi π无关,所以对梯度没有影响,所以在目标函数中可以直接忽略。

然后又引入了 reparameter的方法,

a t = f ϕ ( ϵ t ; s t ) , ϵ ∼ N a_t = f_\phi(\epsilon_t;s_t), \epsilon\sim\mathcal{N} at=fϕ(ϵt;st),ϵN

将上式带入 ( 1.4 ) (1.4) (1.4)中则有

J π ( ϕ ) = E s t ∼ D , a t ∼ π ϕ [ ln ⁡ ( π ϕ ( f ϕ ( ϵ t ; s t ) ∣ s t ) ) − Q θ ( s t , f ϕ ( ϵ t ; s t ) ) ] J_\pi(\phi)=\mathbb{E}_{s_t\sim\mathcal{D}, a_t\sim \pi_\phi} \Big[ \ln\Big(\pi_\phi\big(f_\phi(\epsilon_t;s_t)|s_t\big)\Big) - Q_\theta\Big(s_t,f_\phi(\epsilon_t;s_t)\Big) \Big] Jπ(ϕ)=EstD,atπϕ[ln(πϕ(fϕ(ϵt;st)st))Qθ(st,fϕ(ϵt;st))]

最后,只需要不断收集数据,缩小这两个损失函数,就可以得到收敛到一个解。

1.3 Two Q Value Neural Network

​ SAC的策略网络与DDPG中策略网络直接估计动作值大小不同,SAC的策略网络是估计连续动作空间Gaussian分布的均值和方差,再从这个Gaussian 分布中均匀采样获得连续的动作值。SAC中可以维护一个V值函数网络,也可以不维护V值函数网络,但是SAC中必须的是两个Q值函数网络及两个Q值网络的target network和一个策略网络 π \pi π。为什么要维护两个Q值网络呢?这是因为为了减少Q值网络存在的过高估计的问题。然后用两个Q值网络中较小的Q值网络来计算损失函数,假设存在两个Q值网络 Q ( θ 1 ) , Q ( θ 2 ) Q(\theta_1),Q(\theta_2) Q(θ1),Q(θ2)和其对应的target network Q ( θ 1 − ) , Q ( θ 2 − ) Q(\theta_1^-),Q(\theta_2^-) Q(θ1),Q(θ2)

​ 那么Q值函数的损失函数就成了

J Q ( θ ) = E ( s t , a t ) ∼ D [ 1 2 ( Q θ ( s t , a t ) − Q ^ ( s t , a t ) ) ] Q ^ ( s t , a t ) = r ( s t , a t ) + γ V ψ ( s t + 1 ) V ψ ( s t + 1 ) = Q θ ( s t + 1 , a t + 1 ) − α log ⁡ ( π ( a t + 1 ∣ s t + 1 ) ) \begin{align} J_Q(\theta) & = \mathbb{E}_{(s_t,a_t)\sim\mathcal{D}} \Big[ \frac{1}{2}\Big( Q_\theta(s_t,a_t) - \hat{Q}(s_t,a_t) \Big) \Big] \tag{1.5} \\ \hat{Q}(s_t,a_t) & = r(s_t,a_t) + \gamma V_\psi(s_{t+1}) \tag{1.6} \\ V_\psi(s_{t+1}) & = Q_\theta(s_{t+1}, a_{t+1}) - \alpha \log (\pi(a_{t+1}|s_{t+1})) \tag{1.7} \end{align} JQ(θ)Q^(st,at)Vψ(st+1)=E(st,at)D[21(Qθ(st,at)Q^(st,at))]=r(st,at)+γVψ(st+1)=Qθ(st+1,at+1)αlog(π(at+1st+1))(1.5)(1.6)(1.7)

结合式子 1.5 , 1.6 , 1.7 1.5, 1.6, 1.7 1.5,1.6,1.7则有

J Q ( θ ) = E ( s t , a t ) ∼ D [ 1 2 ( Q θ ( s t , a t ) − ( r ( s t , a t ) + γ ( min ⁡ j = 1 , 2 Q θ j − ( s t + 1 , a t + 1 ) − α log ⁡ π ( a t + 1 ∣ s t + 1 ) ) ) ) 2 ] J_Q(\theta) = \textcolor{red}{\mathbb{E}_{(s_t,a_t)\sim\mathcal{D}} \Big[ \frac{1}{2}\Big( Q_\theta(s_t,a_t) - \Big(r(s_t,a_t)+\gamma \big(\min_{j=1,2}Q_{\theta_j^-}(s_{t+1},a_{t+1}) - \alpha \log\pi(a_{t+1}|s_{t+1}) \big) \Big) \Big)^2 \Big]} JQ(θ)=E(st,at)D[21(Qθ(st,at)(r(st,at)+γ(j=1,2minQθj(st+1,at+1)αlogπ(at+1st+1))))2]

因为SAC也是一种离线的算法,为了让训练更加稳定,这里使用了目标Q网络 Q ( θ − ) Q(\theta^-) Q(θ),同样是两个目标网络,与两个Q网络相对应,SAC中目标Q网络的更新方式和DDPG中一致。

​ 之前推导了策略 π ( ϕ ) \pi(\phi) π(ϕ)的损失函数如下

J π ( ϕ ) = E s t ∼ D , a t ∼ π ϕ [ ln ⁡ ( π ϕ ( ⋅ ∣ s t ) ) − Q θ ( s t , ⋅ ) ] J_\pi(\phi) = \mathbb{E}_{s_t\sim\mathcal{D}, a_t\sim \pi_\phi} \Big[ \ln(\pi_\phi(\cdot|s_t)) - Q_\theta(s_t,\cdot) \Big] Jπ(ϕ)=EstD,atπϕ[ln(πϕ(st))Qθ(st,)]

再引入reparameter化简之后,就成了

J π ( ϕ ) = E s t ∼ D , a t ∼ π ϕ [ ln ⁡ ( π ϕ ( f ϕ ( ϵ t ; s t ) ∣ s t ) ) − Q θ ( s t , f ϕ ( ϵ t ; s t ) ) ] J_\pi(\phi)=\mathbb{E}_{s_t\sim\mathcal{D}, a_t\sim \pi_\phi} \Big[ \ln\Big(\pi_\phi\big(f_\phi(\epsilon_t;s_t)|s_t\big)\Big) - Q_\theta\Big(s_t,f_\phi(\epsilon_t;s_t)\Big) \Big] Jπ(ϕ)=EstD,atπϕ[ln(πϕ(fϕ(ϵt;st)st))Qθ(st,fϕ(ϵt;st))]

利用双Q网络取最小,再将上述目标函数进行改写

J π ( ϕ ) = E s t ∼ D , a t ∼ π ϕ [ ln ⁡ ( π ϕ ( f ϕ ( ϵ t ; s t ) ∣ s t ) ) − min ⁡ j = 1 , 2 Q θ j ( s t , f ϕ ( ϵ t ; s t ) ) ] J_\pi(\phi)= \textcolor{red}{\mathbb{E}_{s_t\sim\mathcal{D}, a_t\sim \pi_\phi} \Big[ \ln\Big(\pi_\phi\big(f_\phi(\epsilon_t;s_t)|s_t\big)\Big) - \min_{j=1,2}Q_{\theta_j}\Big(s_t,f_\phi(\epsilon_t;s_t)\Big) \Big]} Jπ(ϕ)=EstD,atπϕ[ln(πϕ(fϕ(ϵt;st)st))j=1,2minQθj(st,fϕ(ϵt;st))]

Image

1.4 Tricks

​ SAC还集成了一些别的算法的常用技巧,比如Replay Buffer来产生independent and identically distribution的样本,使用了Double DQN中target network的思想使用两个网络。SAC中最重要的一个技巧是自动调整熵正则项,在 SAC 算法中,如何选择熵正则项的系数非常重要。在不同的状态下需要不同大小的熵:在最优动作不确定的某个状态下,熵的取值应该大一点;而在某个最优动作比较确定的状态下,熵的取值可以小一点。为了自动调整熵正则项,SAC 将强化学习的目标改写为一个带约束的优化问题:

max ⁡ π E π [ ∑ t r ( s t , a t ) ] s.t. E ( s t , a t ) ∼ ρ π [ − log ⁡ ( π t ( a t ∣ s t ) ) ] ≥ H 0 \max_\pi \mathbb{E}_\pi\Big[ \sum_t r(s_t,a_t) \Big] \quad \text{s.t.} \quad \mathbb{E}_{(s_t,a_t)\sim\rho_\pi}[-\log (\pi_t(a_t|s_t))] \ge \mathcal{H}_0 πmaxEπ[tr(st,at)]s.t.E(st,at)ρπ[log(πt(atst))]H0

H 0 \mathcal{H}_0 H0 是预先定义好的最小策略熵的阈值。通过一些数学技巧简化,可以得到温度 α \alpha α的损失函数

J ( α ) = E s t ∼ R , a t ∼ π ( ⋅ ∣ s t ) [ − α log ⁡ ( π t ( a t ∣ s t ) ) − α H 0 ] J(\alpha) = \textcolor{red}{\mathbb{E}_{s_t\sim R,a_t\sim \pi(\cdot|s_t)}[-\alpha\log(\pi_t(a_t|s_t))-\alpha\mathcal{H}_0]} J(α)=EstR,atπ(st)[αlog(πt(atst))αH0]

1.5 Pesudocode

Image

2. 代码实现

2.1 SAC处理连续动作空间

采用gymnasiumPendulum-v1的连续动作环境,整体代码如下

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Normalfrom tqdm import tqdm
import collections
import random
import numpy as np
import matplotlib.pyplot as plt
import gym# replay buffer
class ReplayBuffer():def __init__(self, capacity):self.buffer = collections.deque(maxlen=capacity)def add(self, s, r, a, s_, d):self.buffer.append((s,r,a,s_,d))def sample(self, batch_size):transitions = random.sample(self.buffer, batch_size)states, rewards, actions, next_states, dones = zip(*transitions)return np.array(states), rewards, actions, np.array(next_states), donesdef size(self):return len(self.buffer)# Actor
class PolicyNet_Continuous(nn.Module):"""动作空间符合高斯分布,输出动作空间的均值mu,和标准差std"""def __init__(self, state_dim, hidden_dim, action_dim, action_bound):super(PolicyNet_Continuous, self).__init__()self.fc1 = nn.Sequential(nn.Linear(in_features=state_dim, out_features=hidden_dim),nn.ReLU())self.fc_mu = nn.Linear(in_features=hidden_dim, out_features=action_dim)self.fc_std = nn.Sequential(nn.Linear(in_features=hidden_dim, out_features=action_dim),nn.Softplus())self.action_bound = action_bounddef forward(self, s):x = self.fc1(s)mu = self.fc_mu(x)std = self.fc_std(x)distribution = Normal(mu, std)normal_sample = distribution.rsample()normal_log_prob = distribution.log_prob(normal_sample)# get action limit to [-1,1]action = torch.tanh(normal_sample)# get tanh_normal log probabilitytanh_log_prob = normal_log_prob - torch.log(1 - torch.tanh(action).pow(2) + 1e-7)# get action boundedaction = action * self.action_boundreturn action, tanh_log_prob# Critic
class QValueNet_Continuous(nn.Module):def __init__(self, state_dim, hidden_dim, action_dim):super(QValueNet_Continuous, self).__init__()self.fc1 = nn.Sequential(nn.Linear(in_features=state_dim + action_dim, out_features=hidden_dim),nn.ReLU())self.fc2 = nn.Sequential(nn.Linear(in_features=hidden_dim, out_features=hidden_dim),nn.ReLU())self.fc_out = nn.Linear(in_features=hidden_dim, out_features=1)def forward(self, s, a):cat = torch.cat([s,a], dim=1)x = self.fc1(cat)x = self.fc2(x)return self.fc_out(x)# maximize entropy deep reinforcement learning SAC
class SAC_Continuous():def __init__(self, state_dim, hidden_dim, action_dim, action_bound,actor_lr, critic_lr, alpha_lr, target_entropy, tau, gamma,device):# actorself.actor = PolicyNet_Continuous(state_dim, hidden_dim, action_dim, action_bound).to(device)# two criticsself.critic1 = QValueNet_Continuous(state_dim, hidden_dim, action_dim).to(device)self.critic2 = QValueNet_Continuous(state_dim, hidden_dim, action_dim).to(device)# two target criticsself.target_critic1 = QValueNet_Continuous(state_dim, hidden_dim, action_dim).to(device)self.target_critic2 = QValueNet_Continuous(state_dim, hidden_dim, action_dim).to(device)# initialize with same parametersself.target_critic1.load_state_dict(self.critic1.state_dict())self.target_critic2.load_state_dict(self.critic2.state_dict())# specify optimizersself.optimizer_actor = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)self.optimizer_critic1 = torch.optim.Adam(self.critic1.parameters(), lr=critic_lr)self.optimizer_critic2 = torch.optim.Adam(self.critic2.parameters(), lr=critic_lr)# 使用alpha的log值可以使训练稳定self.log_alpha = torch.tensor(np.log(0.01), dtype=torch.float, requires_grad = True)self.optimizer_log_alpha = torch.optim.Adam([self.log_alpha], lr=alpha_lr)self.target_entropy = target_entropyself.gamma = gammaself.tau = tauself.device = devicedef take_action(self, state):state = torch.tensor(np.array([state]), dtype=torch.float).to(self.device)action, _ = self.actor(state)return [action.item()]# calculate td targetdef calc_target(self, rewards, next_states, dones):next_action, log_prob = self.actor(next_states)entropy = -log_probq1_values = self.target_critic1(next_states, next_action)q2_values = self.target_critic2(next_states, next_action)next_values = torch.min(q1_values, q2_values) + self.log_alpha.exp() * entropytd_target = rewards + self.gamma * next_values * (1-dones)return td_target# soft update methoddef soft_update(self, net, target_net):for param_target, param in zip(target_net.parameters(), net.parameters()):param_target.data.copy_(param_target.data * (1.0-self.tau) + param.data * self.tau)def update(self, transition_dict):states = torch.tensor(transition_dict['states'], dtype=torch.float).to(self.device)rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1,1).to(self.device)actions = torch.tensor(transition_dict['actions'], dtype=torch.float).view(-1,1).to(self.device)next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float).to(self.device)dones = torch.tensor(transition_dict['dones'], dtype=torch.float).view(-1,1).to(self.device)rewards = (rewards + 8.0) / 8.0     #对倒立摆环境的奖励进行重塑,方便训练# update two Q-value networktd_target = self.calc_target(rewards, next_states, dones).detach()critic1_loss = torch.mean(F.mse_loss(td_target, self.critic1(states, actions)))critic2_loss = torch.mean(F.mse_loss(td_target, self.critic2(states, actions)))self.optimizer_critic1.zero_grad()critic1_loss.backward()self.optimizer_critic1.step()self.optimizer_critic2.zero_grad()critic2_loss.backward()self.optimizer_critic2.step()# update policy networknew_actions, log_prob = self.actor(states)entropy = - log_probq1_value = self.critic1(states, new_actions)q2_value = self.critic2(states, new_actions)actor_loss = torch.mean(-self.log_alpha.exp() * entropy - torch.min(q1_value, q2_value))self.optimizer_actor.zero_grad()actor_loss.backward()self.optimizer_actor.step()# update temperature alphaalpha_loss = torch.mean((entropy - self.target_entropy).detach() * self.log_alpha.exp())self.optimizer_log_alpha.zero_grad()alpha_loss.backward()self.optimizer_log_alpha.step()# soft update target Q-value networkself.soft_update(self.critic1, self.target_critic1)self.soft_update(self.critic2, self.target_critic2)def train_off_policy_agent(env, agent, num_episodes, replay_buffer, minimal_size, batch_size, render, seed_number):return_list = []for i in range(10):with tqdm(total=int(num_episodes/10), desc='Iteration %d'%(i+1)) as pbar:for i_episode in range(int(num_episodes/10)):observation, _ = env.reset(seed=seed_number)done = Falseepisode_return = 0while not done:if render:env.render()action = agent.take_action(observation)observation_, reward, terminated, truncated, _ = env.step(action)done = terminated or truncatedreplay_buffer.add(observation, action, reward, observation_, done)# swap statesobservation = observation_episode_return += rewardif replay_buffer.size() > minimal_size:b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size)transition_dict = {'states': b_s,'actions': b_a,'rewards': b_r,'next_states': b_ns,'dones': b_d}agent.update(transition_dict)return_list.append(episode_return)if(i_episode+1) % 10 == 0:pbar.set_postfix({'episode': '%d'%(num_episodes/10 * i + i_episode + 1),'return': "%.3f"%(np.mean(return_list[-10:]))})pbar.update(1)env.close()return return_listdef moving_average(a, window_size):cumulative_sum = np.cumsum(np.insert(a, 0, 0)) middle = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_sizer = np.arange(1, window_size-1, 2)begin = np.cumsum(a[:window_size-1])[::2] / rend = (np.cumsum(a[:-window_size:-1])[::2] / r)[::-1]return np.concatenate((begin, middle, end))def plot_curve(return_list, mv_return, algorithm_name, env_name):episodes_list = list(range(len(return_list)))plt.plot(episodes_list, return_list, c='gray', alpha=0.6)plt.plot(episodes_list, mv_return)plt.xlabel('Episodes')plt.ylabel('Returns')plt.title('{} on {}'.format(algorithm_name, env_name))plt.show()if __name__ == "__main__":# reproducibleseed_number = 0random.seed(seed_number)np.random.seed(seed_number)torch.manual_seed(seed_number)num_episodes = 150     # episodes lengthhidden_dim = 128        # hidden layers dimensiongamma = 0.98            # discounted rateactor_lr = 1e-4         # lr of actorcritic_lr = 1e-3        # lr of criticalpha_lr = 1e-4tau = 0.005             # soft update parameterbuffer_size = 10000minimal_size = 1000batch_size = 64device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')env_name = 'Pendulum-v1'render = Falseif render:env = gym.make(id=env_name, render_mode='human')else:env = gym.make(id=env_name)state_dim = env.observation_space.shape[0]action_dim = env.action_space.shape[0]  action_bound = env.action_space.high[0]# entropy初始化为动作空间维度的负数target_entropy = - env.action_space.shape[0]replaybuffer = ReplayBuffer(buffer_size)agent = SAC_Continuous(state_dim, hidden_dim, action_dim, action_bound, actor_lr, critic_lr, alpha_lr, target_entropy, tau, gamma, device)return_list = train_off_policy_agent(env, agent, num_episodes, replaybuffer, minimal_size, batch_size, render, seed_number)mv_return = moving_average(return_list, 9)plot_curve(return_list, mv_return, 'SAC', env_name)

所获得的回报曲线如下图

Image

2.2 SAC处理离散动作空间

采用gaymnasium中的CartPole-v1离散动作空间的环境。

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categoricalfrom tqdm import tqdm
import collections
import random
import numpy as np
import matplotlib.pyplot as plt
import gym# replay buffer
class ReplayBuffer():def __init__(self, capacity):self.buffer = collections.deque(maxlen=capacity)def add(self, s, r, a, s_, d):self.buffer.append((s,r,a,s_,d))def sample(self, batch_size):transitions = random.sample(self.buffer, batch_size)states, rewards, actions, next_states, dones = zip(*transitions)return np.array(states), rewards, actions, np.array(next_states), donesdef size(self):return len(self.buffer)# Actor
class PolicyNet_Discrete(nn.Module):"""动作空间服从离散的概率分布,输出每个动作的概率值"""def __init__(self, state_dim, hidden_dim, action_dim):super(PolicyNet_Discrete, self).__init__()self.fc1 = nn.Sequential(nn.Linear(in_features=state_dim, out_features=hidden_dim),nn.ReLU())self.fc2 = nn.Sequential(nn.Linear(in_features=hidden_dim, out_features=action_dim),nn.Softmax(dim=1))def forward(self, s):x = self.fc1(s)return self.fc2(x)# Critic
class QValueNet_Discrete(nn.Module):def __init__(self, state_dim, hidden_dim, action_dim):super(QValueNet_Discrete, self).__init__()self.fc1 = nn.Sequential(nn.Linear(in_features=state_dim, out_features=hidden_dim),nn.ReLU())self.fc2 = nn.Linear(in_features=hidden_dim, out_features=action_dim)def forward(self, s):x = self.fc1(s)return self.fc2(x)# maximize entropy deep reinforcement learning SAC
class SAC_Continuous():def __init__(self, state_dim, hidden_dim, action_dim,actor_lr, critic_lr, alpha_lr, target_entropy, tau, gamma,device):# actorself.actor = PolicyNet_Discrete(state_dim, hidden_dim, action_dim).to(device)# two criticsself.critic1 = QValueNet_Discrete(state_dim, hidden_dim, action_dim).to(device)self.critic2 = QValueNet_Discrete(state_dim, hidden_dim, action_dim).to(device)# two target criticsself.target_critic1 = QValueNet_Discrete(state_dim, hidden_dim, action_dim).to(device)self.target_critic2 = QValueNet_Discrete(state_dim, hidden_dim, action_dim).to(device)# initialize with same parametersself.target_critic1.load_state_dict(self.critic1.state_dict())self.target_critic2.load_state_dict(self.critic2.state_dict())# specify optimizersself.optimizer_actor = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)self.optimizer_critic1 = torch.optim.Adam(self.critic1.parameters(), lr=critic_lr)self.optimizer_critic2 = torch.optim.Adam(self.critic2.parameters(), lr=critic_lr)# 使用alpha的log值可以使训练稳定self.log_alpha = torch.tensor(np.log(0.01), dtype=torch.float, requires_grad = True)self.optimizer_log_alpha = torch.optim.Adam([self.log_alpha], lr=alpha_lr)self.target_entropy = target_entropyself.gamma = gammaself.tau = tauself.device = devicedef take_action(self, state):state = torch.tensor(np.array([state]), dtype=torch.float).to(self.device)probs = self.actor(state)action_dist = Categorical(probs)action = action_dist.sample()return action.item()# calculate td targetdef calc_target(self, rewards, next_states, dones):next_probs = self.actor(next_states)next_log_probs = torch.log(next_probs + 1e-8)entropy = -torch.sum(next_probs * next_log_probs, dim=1, keepdim=True)q1_values = self.target_critic1(next_states)q2_values = self.target_critic2(next_states)min_qvalue = torch.sum(next_probs * torch.min(q1_values, q2_values),dim=1,keepdim=True)next_value = min_qvalue + self.log_alpha.exp() * entropytd_target = rewards + self.gamma * next_value * (1 - dones)return td_target# soft update methoddef soft_update(self, net, target_net):for param_target, param in zip(target_net.parameters(), net.parameters()):param_target.data.copy_(param_target.data * (1.0-self.tau) + param.data * self.tau)def update(self, transition_dict):states = torch.tensor(transition_dict['states'], dtype=torch.float).to(self.device)rewards = torch.tensor(transition_dict['rewards'], dtype=torch.float).view(-1,1).to(self.device)actions = torch.tensor(transition_dict['actions'], dtype=torch.int64).view(-1,1).to(self.device)next_states = torch.tensor(transition_dict['next_states'], dtype=torch.float).to(self.device)dones = torch.tensor(transition_dict['dones'], dtype=torch.float).view(-1,1).to(self.device)rewards = (rewards + 8.0) / 8.0     #对倒立摆环境的奖励进行重塑,方便训练# update two Q-value networktd_target = self.calc_target(rewards, next_states, dones).detach()critic1_loss = torch.mean(F.mse_loss(td_target, self.critic1(states).gather(dim=1,index=actions)))critic2_loss = torch.mean(F.mse_loss(td_target, self.critic2(states).gather(dim=1,index=actions)))self.optimizer_critic1.zero_grad()critic1_loss.backward()self.optimizer_critic1.step()self.optimizer_critic2.zero_grad()critic2_loss.backward()self.optimizer_critic2.step()# update policy networkprobs = self.actor(states)log_probs = torch.log(probs + 1e-8)entropy = -torch.sum(probs * log_probs, dim=1, keepdim=True)q1_value = self.critic1(states)q2_value = self.critic2(states)min_qvalue = torch.sum(probs * torch.min(q1_value, q2_value),dim=1,keepdim=True)  # 直接根据概率计算期望actor_loss = torch.mean(-self.log_alpha.exp() * entropy - min_qvalue)self.optimizer_actor.zero_grad()actor_loss.backward()self.optimizer_actor.step()# update temperature alphaalpha_loss = torch.mean((entropy - self.target_entropy).detach() * self.log_alpha.exp())self.optimizer_log_alpha.zero_grad()alpha_loss.backward()self.optimizer_log_alpha.step()# soft update target Q-value networkself.soft_update(self.critic1, self.target_critic1)self.soft_update(self.critic2, self.target_critic2)def train_off_policy_agent(env, agent, num_episodes, replay_buffer, minimal_size, batch_size, render, seed_number):return_list = []for i in range(10):with tqdm(total=int(num_episodes/10), desc='Iteration %d'%(i+1)) as pbar:for i_episode in range(int(num_episodes/10)):observation, _ = env.reset(seed=seed_number)done = Falseepisode_return = 0while not done:if render:env.render()action = agent.take_action(observation)observation_, reward, terminated, truncated, _ = env.step(action)done = terminated or truncatedreplay_buffer.add(observation, action, reward, observation_, done)# swap statesobservation = observation_episode_return += rewardif replay_buffer.size() > minimal_size:b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size)transition_dict = {'states': b_s,'actions': b_a,'rewards': b_r,'next_states': b_ns,'dones': b_d}agent.update(transition_dict)return_list.append(episode_return)if(i_episode+1) % 10 == 0:pbar.set_postfix({'episode': '%d'%(num_episodes/10 * i + i_episode + 1),'return': "%.3f"%(np.mean(return_list[-10:]))})pbar.update(1)env.close()return return_listdef moving_average(a, window_size):cumulative_sum = np.cumsum(np.insert(a, 0, 0)) middle = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_sizer = np.arange(1, window_size-1, 2)begin = np.cumsum(a[:window_size-1])[::2] / rend = (np.cumsum(a[:-window_size:-1])[::2] / r)[::-1]return np.concatenate((begin, middle, end))def plot_curve(return_list, mv_return, algorithm_name, env_name):episodes_list = list(range(len(return_list)))plt.plot(episodes_list, return_list, c='gray', alpha=0.6)plt.plot(episodes_list, mv_return)plt.xlabel('Episodes')plt.ylabel('Returns')plt.title('{} on {}'.format(algorithm_name, env_name))plt.show()if __name__ == "__main__":# reproducibleseed_number = 0random.seed(seed_number)np.random.seed(seed_number)torch.manual_seed(seed_number)num_episodes = 200    # episodes lengthhidden_dim = 128        # hidden layers dimensiongamma = 0.98            # discounted rateactor_lr = 1e-3         # lr of actorcritic_lr = 1e-2        # lr of criticalpha_lr = 1e-2tau = 0.005             # soft update parameterbuffer_size = 10000minimal_size = 500batch_size = 64device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')env_name = 'CartPole-v1'render = Falseif render:env = gym.make(id=env_name, render_mode='human')else:env = gym.make(id=env_name)state_dim = env.observation_space.shape[0]action_dim = env.action_space.n  # entropy初始化为-1target_entropy = -1replaybuffer = ReplayBuffer(buffer_size)agent = SAC_Continuous(state_dim, hidden_dim, action_dim, actor_lr, critic_lr, alpha_lr, target_entropy, tau, gamma, device)return_list = train_off_policy_agent(env, agent, num_episodes, replaybuffer, minimal_size, batch_size, render, seed_number)mv_return = moving_average(return_list, 9)plot_curve(return_list, mv_return, 'SAC', env_name)

Reference

Hands on RL

SAC(Soft Actor-Critic)阅读笔记

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

http://www.lryc.cn/news/127712.html

相关文章:

  • JavaScript中的this指向,call、apply、bind的简单实现
  • Linux学习之基本指令一
  • appium默认60秒关闭应用的问题
  • Docker 容器内无法使用vim命令 解决方法
  • Django的简介安装与配置及两大设计模式
  • Mybatis分页插件——PageHelper
  • k8s认证详解 k8s证书详解 2023推荐
  • php初解
  • 【C语言】回调函数,qsort排序函数的使用和自己实现,超详解
  • PHP手术麻醉系统源码,自动生成麻醉和护理医疗文书
  • 内网穿透实战应用——【通过cpolar分享本地电脑上有趣的照片:发布piwigo网页】
  • iPhone删除的照片能恢复吗?不小心误删了照片怎么找回?
  • LeetCode--HOT100题(32)
  • SAP MM学习笔记24-以评估收货(评价)和非评估收货(非评价)
  • Hadoop的DataNode无法启动的解决方案
  • re中的match和search有什么区别?
  • 《内网穿透》无需公网IP,公网SSH远程访问家中的树莓派
  • .net连接mysql,提示找不到请求的 .Net Framework Data Provider。可能没有安装
  • 销售自动化管理软件是什么,销售自动化管理软件有什么优势
  • MySQL 函数
  • 爬虫逆向实战(六)--猿人学第四题
  • 【大数据Hive】hive 事务表使用详解
  • 网络层协议
  • JWT(JSON Web Token )令牌
  • leetcode 力扣刷题 滑动窗口 部分题解(记录)
  • Intellij IDEA SBT依赖分析插件
  • MySQL中事务特性以及隔离机制
  • Docker知识(详细笔记)
  • 【C#】获取已安装的NETFramework版本集合
  • 对字符串中所有单词进行倒排-C语言/Java