当前位置: 首页 > news >正文

空洞卷积学习笔记

文章目录

    • 1. 扩张卷积的提出
    • 2. 理解的难点

本片博客的主题思路来自于这篇文章——如何理解Dilated Convolutions(空洞卷积),但是作者似乎是很久之前写的,文字的排版很混乱,自己来写一个新的。

1. 扩张卷积的提出

  1. Multi-Scale Context Aggregation by Dilated Convolutions
  2. Dilated Residual Networks

这里有原作者推荐的一篇论文笔记,大家有兴趣可以看一看,论文笔记——CVPR 2017 Dilated Residual Networks。

在这里插入图片描述

2. 理解的难点

上图是论文 Multi-Scale Context Aggregation by Dilated Convolutions 的原图,我们可以问几个小问题

  • 红点代表什么含义
  • 为什么扩张卷积,图像尺寸是不改变的
  • 图中最外层图像代表什么

在这里插入图片描述


在这里插入图片描述

本图来自博客 A guide to receptive field arithmetic

上面这张图可以帮助你从直观上更好的理解感受野,这个图来自一篇博客,A guide to receptive field arithmetic for Convolutional Neural Networks,看不懂的话可以看中文翻译版,都很有参考价值。

我们根据感受野的计算公式

l k = l k − 1 + ( ( f k − 1 ) ∗ ∐ i = 1 k − 1 s i ) l_{k}=l_{k-1}+\left(\left(f_{k}-1\right) * \coprod_{i=1}^{k-1} s_{i}\right) lk=lk1+((fk1)i=1k1si)

其中, l k l_{k} lk 为第 k − 1 k-1 k1 层的感受野大小, f k f_k fk 是当前层的卷积核大小, s i s_i si 是第 i i i 层的步长。可以推导出空洞卷积的计算公式,本质上就是在卷积和中间添0,扩大了卷积和的大小。

设普通卷积和的大小为 f k f_k fk,则等效的空洞卷积核的大小为 d k d_k dk,有公式

d k = ( f k − 1 ) × ( r a t e − 1 ) + f k d_k=(f_k-1)\times (\mathrm{rate}-1)+f_k dk=(fk1)×(rate1)+fk

回到最初的问题

  • 红点代表什么意思?代表的是感受野的中心
  • 空洞卷积得到的特征图大小是不变的

关于特征图大小的计算,我们有如下的公式

n out  = ⌊ n in  + 2 p − k s ⌋ + 1 n_{\text {out }}=\left\lfloor\frac{n_{\text {in }}+2 p-k}{s}\right\rfloor+1 nout =snin +2pk+1

其中, n out  n_{\text {out }} nout  n in  n_{\text {in }} nin  分表代表输出和输入的特征图尺度, k k k 代表卷积核大小, p p p 代表填充的尺寸, s s s 代表卷积的步长。

在这里插入图片描述

http://www.lryc.cn/news/127099.html

相关文章:

  • WPF中的UseLayoutRounding和SnapsToDevicePixels
  • Windows权限维持—自启动映像劫持粘滞键辅助屏保后门WinLogon
  • Mysql之explain详解
  • 每天一道leetcode:1926. 迷宫中离入口最近的出口(图论中等广度优先遍历)
  • Mysql_5.7下载安装与配置基础操作教程
  • 【业务功能篇68】电商项目相关核心设计
  • 微信开发之一键退出群聊的技术实现
  • 〔012〕Stable Diffusion 之 中文提示词自动翻译插件 篇
  • 【C++】一文带你初识C++继承
  • SDK是什么,SDK和API有什么区别
  • golang中使用chan控制协程并发简单事例
  • 好用画流程图软件推荐 excalidraw
  • 【RP2040】香瓜树莓派RP2040之搭建开发环境(windows)
  • 基于springboot线上礼品商城
  • 开源,微信小程序 美食便签地图(FoodNoteMap)的设计与开发
  • kubernetes集群(k8s)之安装部署Calico 网络
  • 【C/C++】C++11 Lambda 表达式捕获变量使用技巧
  • 大势智慧软硬件技术答疑第八期
  • jvm-jvm与java体系结构
  • Three.js 实现材质边缘通道发光效果
  • 【MFC】10.MFC六大机制:RTTI(运行时类型识别),动态创建机制,窗口切分,子类化-笔记
  • ui设计师个人年终工作总结2020最新范文5篇
  • 开源数据库Mysql_DBA运维实战 (修改root密码)
  • javap获取Kotlin方法JNI方法签名
  • ARM-M0内核MCU,内置24bit ADC,采样率4KSPS,传感器、电子秤、体脂秤专用,国产IC
  • 【STM32】FreeRTOS消息队列和信号量学习
  • 初始C语言(6)——详细讲解表达式求值以及其易错点
  • 【数据结构】树和二叉树
  • GPIO 配置 和 PINCTRL有啥区别
  • GPT法律领域