当前位置: 首页 > news >正文

线段树(维护区间信息)

一,定义:

可以在logN时间内实现区间修改,单点修改,区间查询等操作的工具

二,思路(修改无乘法时):

1,建树

通过把区间不断二分建立一颗二叉树

我们以维护一个数组a={1,2,3,4,5}为例子

int a[N];
struct tree//我们以结构体来存储一颗树
{int l, r;//l,r表示该节点的区间ll sum, add;//sum表示区间和,add为懒惰标记
} t[N * 4 + 2]; //如果维护n个节点的区间,建立完整的二叉树大概需要4*n个树节点void build(int l, int r, int p)
{t[p].l = l, t[p].r = r; //首先存储节点p的区间if (l == r)//如果区间只有一个点{t[p].sum = a[l];//sum就是这个点的值return;}//否则继续二分遍历int mid = l + ((r - l) >> 1);// 移位运算符的优先级小于加减法,所以加上括号,	// 如果写成 (l + r) >> 1 可能会超出 int 范围build(l, mid, 2 * p);build(mid + 1, r, 2 * p + 1);t[p].sum = t[2 * p].sum + t[2 * p + 1].sum;//回来后区间和就等于儿子们的区间和之和
}

2,区间修改与懒惰标记

我们思考,如果我们给区间[2,5]都加上3,后面查询的时候只查询过[3,5]。那么请问,我们有没有必要花时间去更新[2,2]有加上3这件事呢。

显然没有必要,所以我们想要偷懒,我可以对你的修改标记一下,只有到我需要用到你时,才去修改他。

方法就是当我们更新一个区间时,我们就对这个区间进行标记(记录其修改的记录),如果后面我们要访问他的子代,我们首先先询问是否这个区间有标记,有则先更新他的子代,才可以去访问子代。

有了懒惰标记,我们每次深入只要深入到当前区间是目标区间子集就可以不用深入了,然后留下懒惰标记即可

void lazy(int p)
{if (t[p].l == t[p].r)t[p].add = 0;//如果该区间只有一个点,毫无疑问他没有儿子,直接删除他的懒惰标记if (t[p].add)//如果懒惰区间不为0,更新儿子信息{//对儿子们的区间和更新t[2 * p].sum += t[p].add * (t[2 * p].r - t[2 * p].l + 1);t[2 * p + 1].sum += t[p].add * (t[2 * p + 1].r - t[2 * p + 1].l + 1);//每次更新区间就更新这个区间的懒惰标记,这样儿子访问子代时其懒惰区间才可以正常使用t[2 * p].add += t[p].add;t[2 * p + 1].add += t[p].add;//最后重置p的懒惰标记(他就是为子代存在的,而我们已经更新完子代了)t[p].add = 0;}
}void addupdate(int l, int r, int p, ll z)
{if (l <= t[p].l && t[p].r <= r)//如果当前p的区间是目标区间的子集,更新其区间值和懒惰标记就可以返回了{t[p].sum += z * (t[p].r - t[p].l + 1);t[p].add += z;return;}//如果不是全部属于目标区间,访问子代前先更新子代,清空自己的懒惰标记lazy(p);int mid = t[p].l + ((t[p].r - t[p].l) >> 1);if (l <= mid)addupdate(l, r, 2 * p, z);//如果[t[p].l,mid]有一部分属于目标区间,更新[l,mid]if (r > mid)addupdate(l, r, 2 * p + 1, z);//[mid+1,t[p].r]同理t[p].sum = t[2 * p].sum + t[2 * p + 1].sum;//回来后重新更新t[p].sum(因为子代已经更新)
}

3,查询区间(单点值)

和修改的思考差不多,当前区间为目标区间子集就直接访问。否则就更新子代后深入子代

ll ask(int l, int r, int p)
{if (l <= t[p].l && t[p].r <= r)return t[p].sum;//属于子集直接返回lazy(p);//如果不是全部属于目标区间,访问子代前先更新子代,清空自己的懒惰标记int mid = t[p].l + ((t[p].r - t[p].l) >> 1);ll ans = 0;//ans累积属于目标区间的和if (l <= mid)ans += ask(l, r, 2 * p);if (r > mid)ans += ask(l, r, 2 * p + 1);return ans;
}

三:模板题1:P3372 【模板】线段树 1

#include <bits/stdc++.h>
using namespace std;
#define ll     long long
#define int ll
const int N = 1e5 + 10;int a[N];
struct tree//我们以结构体来存储一颗树
{int l, r;//l,r表示该节点的区间ll sum, add;//sum表示区间和,add为懒惰标记
} t[N * 4 + 2]; //如果维护n个节点的区间,建立完整的二叉树大概需要4*n个树节点void build(int l, int r, int p)
{t[p].l = l, t[p].r = r; //首先存储节点p的区间if (l == r)//如果区间只有一个点{t[p].sum = a[l];//sum就是这个点的值return;}//否则继续二分遍历int mid = l + ((r - l) >> 1);// 移位运算符的优先级小于加减法,所以加上括号,	// 如果写成 (l + r) >> 1 可能会超出 int 范围build(l, mid, 2 * p);build(mid + 1, r, 2 * p + 1);t[p].sum = t[2 * p].sum + t[2 * p + 1].sum;//回来后区间和就等于儿子们的区间和之和
}void lazy(int p)
{if (t[p].l == t[p].r)t[p].add = 0;//如果该区间只有一个点,毫无疑问他没有儿子,直接删除他的懒惰标记if (t[p].add)//如果懒惰区间不为0,更新儿子信息{//对儿子们的区间和更新t[2 * p].sum += t[p].add * (t[2 * p].r - t[2 * p].l + 1);t[2 * p + 1].sum += t[p].add * (t[2 * p + 1].r - t[2 * p + 1].l + 1);//每次更新区间就更新这个区间的懒惰标记,这样儿子访问子代时其懒惰区间才可以正常使用t[2 * p].add += t[p].add;t[2 * p + 1].add += t[p].add;//最后重置p的懒惰标记(他就是为子代存在的,而我们已经更新完子代了)t[p].add = 0;}
}void addupdate(int l, int r, int p, ll z)
{if (l <= t[p].l && t[p].r <= r)//如果当前p的区间是目标区间的子集,更新其区间值和懒惰标记就可以返回了{t[p].sum += z * (t[p].r - t[p].l + 1);t[p].add += z;return;}//如果不是全部属于目标区间,访问子代前先更新子代,清空自己的懒惰标记lazy(p);int mid = t[p].l + ((t[p].r - t[p].l) >> 1);if (l <= mid)addupdate(l, r, 2 * p, z);//如果[t[p].l,mid]有一部分属于目标区间,更新[l,mid]if (r > mid)addupdate(l, r, 2 * p + 1, z);//[mid+1,t[p].r]同理t[p].sum = t[2 * p].sum + t[2 * p + 1].sum;//回来后重新更新t[p].sum(因为子代已经更新)
}ll ask(int l, int r, int p)
{if (l <= t[p].l && t[p].r <= r)return t[p].sum;//属于子集直接返回lazy(p);//如果不是全部属于目标区间,访问子代前先更新子代,清空自己的懒惰标记int mid = t[p].l + ((t[p].r - t[p].l) >> 1);ll ans = 0;//ans累积属于目标区间的和if (l <= mid)ans += ask(l, r, 2 * p);if (r > mid)ans += ask(l, r, 2 * p + 1);return ans;
}int32_t main()
{std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);int n, m;cin >> n >> m;for (int i = 1; i <= n; ++i)cin >> a[i];build(1, n, 1);//每次都从根节点p=1建树int b, l, r, k;while (m--){cin >> b >> l >> r;if (b == 1){cin >> k;addupdate(l, r, 1, k);//更新,查询也都成根节点p=1开始}else if (b == 2){cout << ask(l, r, 1) << endl;//更新,查询也都成根节点p=1开始}}return 0;
}

 四,思考(如果区间修改同时存在加法和乘法怎么办)

1,我们清楚,乘法就是把当前的区间都*一个值(当然,这个区间是更新过的,因为每次都是更新完这个区间才进入)。

2,我们考虑使用乘法的影响,当我们对当前p的区间乘z时,t[p].sum*=z,那么更新他的懒惰标记

,以子代2*p为例子,他的子代目前是(t[2p]*t[p].mul+t[p].add*size(2p)),我们*z<-->t[2p]*z*t[p].mul*z+t[p].add*z,所以我们一次要更新t[p].mul,t[p].add。

3,我们考虑进入子代前对懒惰标记的处理,我们发现,t[p].add是可以不断用加法与乘法叠加的,而mul一直都是被乘没有加(在进入这一层之前都是这样)。所以我们更新这一层,首先一定要先乘mul在加add。这对t[2*p].sum与t[2*p].add都是一样的,都是先*t[p].mul再加t[p].add

直接上模板题:P3373 【模板】线段树 2

#include <bits/stdc++.h>
using namespace std;
#define ll     long long
#define int ll
typedef unsigned long long ull;
typedef pair<long long, long long> pll;
typedef pair<int, int> pii;//double 型memset最大127,最小128
//std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
const int INF = 0x3f3f3f3f;         //int型的INF
const ll llINF = 0x3f3f3f3f3f3f3f3f;//ll型的llINF
const int N = 1e5 + 10;int a[N];
int n, m, mod;
struct tree
{int l, r;ll sum, add, mul;
} t[4 * N + 2];void build(int l, int r, int p)
{t[p].l = l, t[p].r = r, t[p].mul = 1; //这里多更新了一个mul的初始值是1if (l == r){t[p].sum = a[l] % mod;return;}int mid = l + ((r - l) >> 1);build(l, mid, 2 * p);build(mid + 1, r, 2 * p + 1);t[p].sum = (t[2 * p].sum + t[2 * p + 1].sum) % mod;
}void lazy(int p)
{if (t[p].l == t[p].r)t[p].add = 0, t[p].mul = 1;if (t[p].add || t[p].mul != 1)//只要加法或者乘法有一个存在懒惰标记就更新{t[2 * p].sum = (t[2 * p].sum * t[p].mul + t[p].add * (t[2 * p].r - t[2 * p].l + 1)) % mod;t[2 * p + 1].sum = (t[2 * p + 1].sum * t[p].mul + t[p].add * (t[2 * p + 1].r - t[2 * p + 1].l + 1)) % mod;//更新sum与add都是先乘后加t[2 * p].add = (t[2 * p].add * t[p].mul + t[p].add) % mod;t[2 * p + 1].add = (t[2 * p + 1].add * t[p].mul + t[p].add) % mod;t[2 * p].mul = (t[2 * p].mul * t[p].mul) % mod;t[2 * p + 1].mul = (t[2 * p + 1].mul * t[p].mul) % mod;//重置标记t[p].add = 0, t[p].mul = 1;}
}void addupdate(int l, int r, int p, ll z)
{if (l <= t[p].l && t[p].r <= r){t[p].sum = (t[p].sum + z * (t[p].r - t[p].l + 1)) % mod;t[p].add = (t[p].add + z) % mod;return;}lazy(p);int mid = t[p].l + ((t[p].r - t[p].l) >> 1);if (l <= mid)addupdate(l, r, 2 * p, z);//只有子代有在目标区间才进入if (r > mid)addupdate(l, r, 2 * p + 1, z);t[p].sum = (t[2 * p].sum + t[2 * p + 1].sum) % mod;
}void mulupdate(int l, int r, int p, ll z)
{if (l <= t[p].l && t[p].r <= r){t[p].sum = (t[p].sum * z) % mod;//乘法需要对p的sum,add,mul都更新t[p].add = (t[p].add * z) % mod;t[p].mul = (t[p].mul * z) % mod;return;}lazy(p);int mid = t[p].l + ((t[p].r - t[p].l) >> 1);if (l <= mid)mulupdate(l, r, 2 * p, z);//只有子代有在目标区间才进入if (r > mid)mulupdate(l, r, 2 * p + 1, z);t[p].sum = (t[2 * p].sum + t[2 * p + 1].sum) % mod;
}ll ask(int l, int r, int p)
{if (l <= t[p].l && t[p].r <= r)return t[p].sum % mod;lazy(p);int mid = t[p].l + ((t[p].r - t[p].l) >> 1);ll ans = 0;if (l <= mid)ans += ask(l, r, 2 * p);if (r > mid)ans += ask(l, r, 2 * p + 1);return ans % mod;
}int32_t main()
{cin >> n >> m >> mod;for (int i = 1; i <= n; ++i)cin >> a[i];build(1, n, 1);int b, l, r, k;while (m--){cin >> b >> l >> r;if (b == 1){cin >> k;mulupdate(l, r, 1, k);}else if (b == 2){cin >> k;addupdate(l, r, 1, k);}else if (b == 3){cout << ask(l, r, 1) << endl;}}return 0;
}

http://www.lryc.cn/news/12651.html

相关文章:

  • C语言 基于Ncurse库的贪吃蛇游戏项目
  • 【Java基础】Java语言特性
  • python进阶--Numyp库(一)
  • CV学习笔记-Inception
  • 注意力机制笔记——结合沐神和B站老弓up主
  • 建议收藏,轻松搞懂区块链
  • php设计一个新春祝福墙
  • KubeSphere 社区双周报 | OpenFunction 集成 WasmEdge | 2023.02.03-02.16
  • 数字IC/FPGA 秋招知识点不全面整理
  • 你知道java8是如何排序Map嘛?
  • 【李忍考研传】一、李忍
  • 测牛学堂:软件测试python深入之类和对象的属性和方法总结
  • css实例--新闻页面
  • SpringCloudGateway 动态转发后端服务
  • 使用canvas写一个flappy bird小游戏
  • KVM-2、虚拟化基础
  • 设计模式之观察者模式与访问者模式详解和应用
  • [SSD固态硬盘技术 18] Over-Provisioning (OP 预留空间)详解,谁“偷”走了SSD的容量?
  • spring注解方式整合Dubbo源码解析
  • 大数值金额大写转换(C语言)
  • 迷宫问题图解 : 基于骨架提取、四邻域
  • 设计模式 - 如何在库和主程序之间互相调用数据和函数
  • Redis面试题:1~2亿条数据需要缓存,请问如何设计这个存储案例
  • 程序员必备的软技能-《如何阅读一本书》
  • Java数据结构-栈、队列常用类(Stack、ArrayDeque、LinkedLList)
  • 拯救了大批爬虫程序员,因为一个简单的神器
  • 2023年美赛C题Wordle预测问题三、四建模及Python代码详细讲解
  • 相关性-回忆录(持续更新)
  • (必备技能)使用Python实现屏幕截图
  • 「数据仓库」怎么选择现代数据仓库?