当前位置: 首页 > news >正文

PyTorch从零开始实现ResNet

文章目录

    • 代码实现
    • 参考

代码实现

本文实现 ResNet原论文 Deep Residual Learning for Image Recognition 中的50层,101层和152层残差连接。
在这里插入图片描述
代码中使用基础残差块这个概念,这里的基础残差块指的是上图中红色矩形圈出的内容:从上到下分别使用3, 4, 6, 3个基础残差块,每个基础残差块由三个卷积层组成,核大小分别为1x1, 3x3, 1x1 。

残差连接的结构

在这里插入图片描述

复现代码如下:

import torch
import torch.nn as nn# 基础残差块,后面ResNet要多次重复使用该块
class block(nn.Module):def __init__(self, in_channels, out_channels, identity_downsample=None, stride=1):super(block, self).__init__()self.expansion = 4  self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(out_channels)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1)self.bn2 = nn.BatchNorm2d(out_channels)self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=1, stride=1, padding=0)self.bn3 = nn.BatchNorm2d(out_channels*self.expansion)self.relu = nn.ReLU()self.identity_downsample = identity_downsampledef forward(self, x):identity = xx = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.conv2(x)x = self.bn2(x)x = self.relu(x)x = self.conv3(x)x = self.bn3(x)if self.identity_downsample is not None:identity = self.identity_downsample(identity)x += identityx = self.relu(x)return xclass ResNet(nn.Module):def __init__(self, block, layers, image_channels, num_classes):super(ResNet, self).__init__()# 初始化的层self.in_channels = 64self.conv1 = nn.Conv2d(image_channels, 64, kernel_size=7, stride=2, padding=3)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU()self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)# ResNet layersself.layer1 = self._make_layer(block, layers[0], out_channels=64, stride=1)self.layer2 = self._make_layer(block, layers[1], out_channels=128, stride=2)self.layer3 = self._make_layer(block, layers[2], out_channels=256, stride=2)self.layer4 = self._make_layer(block, layers[3], out_channels=512, stride=2)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(512*4, num_classes)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avgpool(x)x = x.reshape(x.shape[0], -1)x = self.fc(x)return x# 核心函数:调用block基础残差块,构造ResNet的每一层def _make_layer(self, block, num_residual_blocks, out_channels, stride):identity_downsample = Nonelayers = []if stride != 1 or self.in_channels != out_channels * 4:identity_downsample = nn.Sequential(nn.Conv2d(self.in_channels, out_channels*4, kernel_size=1,stride=stride),                                               nn.BatchNorm2d(out_channels*4))layers.append(block(self.in_channels, out_channels, identity_downsample, stride))self.in_channels = out_channels * 4for i in range(num_residual_blocks - 1):layers.append(block(self.in_channels, out_channels)) # 256 -> 64, 64*4(256) againreturn nn.Sequential(*layers)# 构造ResNet50层:默认图像通道3,分类类别为1000
def resnet50(img_channels=3, num_classes=1000):return ResNet(block, [3, 4, 6, 3], img_channels, num_classes)# 构造ResNet101层  
def resnet101(img_channels=3, num_classes=1000):return ResNet(block, [3, 4, 23, 3], img_channels, num_classes)# 构造ResNet152层  
def resnet152(img_channels=3, num_classes=1000):return ResNet(block, [3, 8, 36, 3], img_channels, num_classes)# 测试输出y的形状是否满足1000类
def test():net = resnet152()x = torch.randn(2, 3, 224, 224)y = net(x)print(y.shape) # [2, 1000]test()

参考

[1] Deep Residual Learning for Image Recognition
[2] https://www.youtube.com/watch?v=DkNIBBBvcPs&list=PLhhyoLH6IjfxeoooqP9rhU3HJIAVAJ3Vz&index=19

http://www.lryc.cn/news/124932.html

相关文章:

  • 企业微信 企业内部开发 学习笔记
  • 03 QT基本控件和功能类
  • epoll数据结构
  • LINUX学习笔记_GIT操作命令
  • 第一百二十九天学习记录:数据结构与算法基础:栈和队列(中)(王卓教学视频)
  • C语言 — qsort 函数
  • 开放式耳机哪个好一点?推荐几款优秀的开放式耳机
  • vue-cli前端工程化——创建vue-cli工程 router版本的创建 目录结构 案例初步
  • Go和Java实现外观模式
  • 人工智能(一)基本概念
  • 〔AI 绘画〕Stable Diffusion 之 解决绘制多人或面部很小的人物时面部崩坏问题 篇
  • 初步认识OSI/TCP/IP一(第三十八课)
  • 英伟达结构化剪枝工具Nvidia Apex Automatic Sparsity [ASP](2)——代码分析
  • FileNotFoundError: [WinError 2] 系统找不到指定的文件。
  • Linux: sysctl:net: IPV4_DEVCONF_ALL ignore_routes_with_linkdown; all vs default
  • 光耦继电器:实现电气隔离的卓越选择
  • 鸿蒙开发学习笔记2——实现页面之间跳转
  • 电子商务类网站需要什么配置的服务器?
  • table 根据窗口缩放,自适应
  • 应急响应-Webshell
  • 【调整奇数偶数顺序】
  • Linux(Ubuntu)系统临时IP以及静态IP配置(关闭、启动网卡等操作)
  • 2023-08-11 LeetCode每日一题(矩阵对角线元素的和)
  • Github 80 个键盘快捷键和一些搜索技巧的备忘清单
  • 神经网络基础-神经网络补充概念-08-逻辑回归中的梯度下降算法
  • npm ERR! cb.apply is not a function
  • iShot Pro for Mac 2.3.9最新中文版
  • FiboSearch Pro – Ajax Search for WooCommerce 商城AJAX实时搜索插件
  • k8s dns 解析service异常
  • P6464 [传智杯 #2 决赛] 传送门