当前位置: 首页 > news >正文

页面置换算法

页面置换算法

在进程运行过程中,若需要访问的物理块不在内存中,就需要通过一定的方式来将页面载入内存,而此时内存很可能已无空闲空间,因此就需要一定的算法来选择内存中要被置换的页面,这种算法就被称为页面置换算法。页面置换算法的好坏,将直接影响系统的性能。

页面的换入、换出需要磁盘I/O,会有较大的开销,因此好的页面置换算法应该追求更少的缺页率。

下面介绍几种常用的页面置换算法。

  • 最佳置换算法(OPT)
  • 先入先出置换算法(FIFO)
  • 最近最久未使用置换算法(LRU)
  • 时钟置换算法(CLOCK)
  • 改进型的时钟置换算法

1.最佳置换算法(OPT)

该算法是一种理想化的算法,具有非常好的性能,但是由于目前无法预知未来,因此难以实现。

该算法选择淘汰的页面是:未来永远不会再使用的页面 or 未来最长时间不再被访问的页面。该算法保证了可以获得最低缺页率,但无法预知未来页面的使用情况,因此目前无法实现,但通常用来评价其他算法。

例:假定系统为某进程分配了三个物理块,并考虑有以下的页面号引用串:
7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

进程运行时,先将 7,0,1 三个页面装入内存。以后,当进程要访问页面 2 时,将会产生缺页中断。此时 OS 根据最佳置换算法,将选择页面 7 予以淘汰。这是因为页面 0 将作为第 5 个被访问的页面,页面 1 是第 14 个被访问的页面,而页面 7 则要在第 18 次页面访问时才需调入。下次访问页面 0 时,因它已在内存而不必产生缺页中断。当进程访问页面 3时,又将引起页面 1 被淘汰;因为,它在现有的 1,2,0 三个页面中,将是以后最晚才被访问的。下图给出了采用最佳置换算法时的置换图。由图可看出,采用最佳置换算法发生了 6 次页面置换。

image-20230218001046465

2.先进先出页面置换算法(FIFO)

该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。

例:假设系统为某进程分配了三个内存块,并考虑到有以下页面号引用串:3,2,1,0,3,2,4,3,2,1,0,4

当进程第一次访问页面0 时,将把第 3 页换出,因为它是最先被调入内存的;在第一次访问页面 3 时,又将把第 2 页换出, 因为它在现有的 2, 1, 0 三个页面中是最老的页。 由下图可以看出,利用 FIFO 算法时进行了 6 次页面置换,9次缺页中断。

image-20230218001501017

3.最近最久未使用算法(LRU)

最近最久未使用置换算法(LRU):每次淘汰的页面是最近最久未使用的页面实现方法:赋予每个页面对应的页表项中,用访问字段记录该页面自上次被访问以来所经历的时间t。当需要淘汰一个页面时,选择现有页面中t值最大的,即最近最久未使用的页面。该算法的实现需要专门的

image-20230218001647168

例:假设系统为某进程分配了四个内存块,并考虑到有以下页面号引用串:1,8,1,7,8,2,7,2,1,8,3,8,2,1,3,1,7,1,3,7

在手动做题时,若需要淘汰页面,可以逆向检查此时在内存中的几个页面号。在逆向扫image-20230218001828648

4.时钟置换算法(CLOCK)

时钟置换算法是一种性能和开销较均衡的算法,又称CLOCK算法,或最近未用算法(NRU)
简单的CLOCK算法实现方法:为每个页面设置一个访问位(访问位为1,表示最近访问过;访问位为0,表示最近没访问过),再将内存中的页面都通过链接指针链接成一个循环队列。当某页被访问时,其访问位置为1。当需要淘汰一个页面时,只需检查页的访问位。如果是0,就选择该页换出;如果是1,则将它置为0,暂不换出,继续检查下一个页面,若第一轮扫描中所有页面都是1,则将这些页面的访问位依次置为0后,再进行第二轮扫描(第二轮扫描中一定会有访问位为0的页面,因此简单的CLOCK算法选择一个淘汰页面最多会经过两轮扫描)。

image-20230218001647168

5.改进型的时钟置换算法

简单的时钟置换算法仅考虑到一个页面最近是否被访问过。事实上,如果被淘汰的页面没有被修改过,就不需要执行I/O操作写回外存。只有被淘汰的页面被修改过时,才需要写回外存。

因此,除了考虑一个页面最近有没有被访问过之外,操作系统还应考虑页面有没有被修改过。在其他条件都相同时,应优先淘汰没有修改过的页面,避免I/O操作。这就是改进型的时钟置换算法的思想。修改位=0,表示页面没有被修改过;修改位=1,表示页面被修改过。
为方便讨论,用(访问位,修改位)的形式表示各页面状态。如(1,1)表示一个页面近期被访问过,且被修改过。

算法规则: 将所有可能被置换的页面排成一个循环队列
第一轮:从当前位置开始扫描到第一个(0,0)的帧用于替换。本轮扫描不修改任何标志位
第二轮:若第一轮扫描失败,则重新扫描,查找第一个(0,1)的帧用于替换。本轮将所有扫描过的帧访问位设为0
第三轮:若第二轮扫描失败,则重新扫描,查找第一个(0,0)的帧用于替换。本轮扫描不修改任何标志位
第四轮:若第三轮扫描失败,则重新扫描,查找第一个(0,1)的帧用于替换。
由于第二轮已将所有帧的访问位设为0,因此经过第三轮、第四轮扫描一定会有一个帧被选中,因此改进型CLOCK置换算法选择一个淘汰页面最多会进行四轮扫描。

http://www.lryc.cn/news/12091.html

相关文章:

  • 算法导论【在线算法】—The Ski-Rental Problem、The Lost Cow Problem、The Secretary Problem
  • linux 下怎样给pdf 文件加书签
  • [软件工程导论(第六版)]第2章 可行性研究(课后习题详解)
  • [软件工程导论(第六版)]第3章 需求分析(课后习题详解)
  • 基于分布鲁棒联合机会约束的能源和储备调度(Matlab代码实现)
  • ETL和数据建模
  • ccc-pytorch-回归问题(1)
  • 【JAVA八股文】框架相关
  • 二叉树的相关列题!!
  • Java设计模式 - 原型模式
  • 深度学习中的 “Hello World“
  • 购买WMS系统前,有搞清楚与ERP仓库模块的区别吗
  • 一文吃透 Spring 中的IOC和DI
  • 分布式任务处理:XXL-JOB分布式任务调度框架
  • 【源码解析】Ribbon和Feign实现不同服务不同的配置
  • 【webpack5】一些常见优化配置及原理介绍(二)
  • 力扣sql简单篇练习(十九)
  • 线段树c++
  • HTML+CSS+JavaScript学习笔记~ 从入门到精通!
  • LeetCode 430. 扁平化多级双向链表
  • 2.5|iot|第1章嵌入式系统概论|操作系统概述|嵌入式操作系统
  • 一文教会你使用ChatGPT画图
  • Java资料分享
  • yum/vim工具的使用
  • 内网渗透(三十九)之横向移动篇-pass the ticket 票据传递攻击(PTT)横向攻击
  • Unity性能优化之纹理格式终极篇
  • 【Spark分布式内存计算框架——Spark SQL】9. Dataset(下)RDD、DF与DS转换与面试题
  • Windows 环境下,cmake工程导入OpenCV库
  • 微服务架构设计模式-(16)重构
  • 数据结构:归并排序和堆排序