当前位置: 首页 > news >正文

Python-OpenCV中的图像处理-模板匹配

Python-OpenCV中的图像处理-模板匹配

  • 模板匹配
    • 单对象的模板匹配
    • 多对象的模板匹配

模板匹配

  • 使用模板匹配可以在一幅图像中查找目标
  • 函数: cv2.matchTemplate(), cv2.minMaxLoc()
  • 模板匹配是用来在一副大图中搜寻查找模版图像位置的方法。 OpenCV 为我们提供了函数: cv2.matchTemplate()。和 2D 卷积一样,它也是用模板图像在输入图像(大图)上滑动,并在每一个位置对模板图像和与其对应的输入图像的子区域进行比较。 OpenCV 提供了几种不同的比较方法(细节请看文档)。返回的结果是一个灰度图像,每一个像素值表示了此区域与模板的匹配程度。
  • 如果输入图像的大小是( WxH),模板的大小是( wxh),输出的结果的大小就是( W-w+1, H-h+1)。当你得到这幅图之后,就可以使用函数cv2.minMaxLoc() 来找到其中的最小值和最大值的位置了。第一个值为矩形左上角的点(位置),( w, h)为 moban 模板矩形的宽和高。这个矩形就是找到的模板区域了。

单对象的模板匹配

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
img2 = img.copy()
template = cv2.imread('./resource/opencv/image/messi_face.jpg', cv2.IMREAD_GRAYSCALE)
w,h = template.shape[::-1]# All the 6 mathods form comparison in a list
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', 'cv2.TM_CCORR_NORMED','cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']for meth in methods:img = img2.copy()# exec 语句用来执行储存在字符串或文件中的 Python 语句。# 例如,我们可以在运行时生成一个包含 Python 代码的字符串,然后使用 exec 语句执行这些语句。# eval 语句用来计算存储在字符串中的有效 Python 表达式method = eval(meth)# Apply template matchingres = cv2.matchTemplate(img, template, method)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)# 使用不同的比较方法,对结果的解释不同if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:top_left = min_locelse:top_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)cv2.rectangle(img, top_left, bottom_right, 255, 2)plt.subplot(121), plt.imshow(res, cmap='gray'), plt.title('Mathing Result'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(img, cmap='gray'), plt.title('Detected Point'), plt.xticks([]), plt.yticks([])plt.suptitle(meth)plt.show()

程序原图文件,在一张大图中搜索梅西的面部。
在这里插入图片描述

在这里插入图片描述
程序运行结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
实测验证 cv2.TM_CCORR 的效果不是太好。

多对象的模板匹配

在前面的部分,我们在图片中搜素梅西的脸,而且梅西只在图片中出现了一次。假如你的目标对象只在图像中出现了很多次怎么办呢?函数cv.minMaxLoc() 只会给出最大值和最小值。此时,我们就要使用阈值了。在下面的例子中我们要经典游戏 Mario 的一张截屏图片中找到其中的硬币。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/mario.jpg', cv2.IMREAD_COLOR)
img1 = img.copy()
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)template = cv2.imread('./resource/opencv/image/mario_coins.jpg', cv2.IMREAD_GRAYSCALE)
w, h = template.shape[::-1]res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
print(res.shape)
threshold = 0.8cv2.imshow('res', res)# numpy.where(condition[, x, y])
loc = np.where(res >= threshold)for pt in zip(*loc[::-1]):cv2.rectangle(img, pt, (pt[0]+w, pt[1]+h), (0, 0, 255), 1)cv2.imshow('image',img1)
cv2.imshow('res',res)
cv2.imshow('draw',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

注意:阀值设定要合适,threshold = 0.8
在这里插入图片描述

threshold = 0.95部分金币没有匹配到
在这里插入图片描述
threshold = 0.5
在这里插入图片描述

http://www.lryc.cn/news/120254.html

相关文章:

  • 模拟队列(c++题解)
  • Redis_哨兵模式
  • Mysql中如果建立了索引,索引所占的空间随着数据量增长而变大,这样无论写入还是查询,性能都会有所下降,怎么处理?
  • MySQL 约束
  • unity实现角色体力功能【体力条+体力计算】
  • 【深度学习所有损失函数】在 NumPy、TensorFlow 和 PyTorch 中实现(1/2)
  • 七夕好物分享,哪些礼物适合送男/女朋友?这几款好物最为合适!
  • C语言学习系列-->看淡指针(2)
  • Java基础篇--Character 类
  • Flutter参考资料
  • sed命令如何正确修改ini配置文件
  • 【新版系统架构补充】-信息系统基础知识
  • 安防监控视频汇聚平台EasyCVR分发的FLV视频流在VLC中无法播放是什么原因?
  • 前端遇到的面试题
  • abbitmq启动访问不了http://localhost:15672 通过修改服务登录admin
  • 换架 3D 飞机,继续飞呀飞
  • js ?? || 使用方法
  • i茅台自动申购算法协议分析
  • 【HarmonyOS】Java如何引用外部jar包
  • vue在线编辑表格导入导出
  • 监控Kafka的关键指标
  • React18 hook学习笔记
  • Java038——正则表达式
  • JavaScript元素选择器
  • Docker安装 elasticsearch-head
  • 交换排序——选择排序和冒泡排序的区别是什么?
  • 吉他谱:Melodies of Life - Final Fantasy Solo Guitar Collections
  • 微信小程序下拉刷新
  • TX2 NX 修改设备树--GPIO
  • .NET对象的内存布局