当前位置: 首页 > news >正文

【云原生】kubernetes中容器的资源限制

目录

1 metrics-server

2 指定内存请求和限制

3 指定 CPU 请求和限制


资源限制

在k8s中对于容器资源限制主要分为以下两类:

  • 内存资源限制: 内存请求(request)和内存限制(limit)分配给一个容器。 我们保障容器拥有它请求数量的内存,但不允许使用超过限制数量的内存。

    • 官网参考地址: 为容器和 Pod 分配内存资源 | Kubernetes

  • CPU 资源限制: 为容器设置 CPU request(请求) 和 CPU limit(限制)。 容器使用的 CPU 不能超过所配置的限制。 如果系统有空闲的 CPU 时间,则可以保证给容器分配其所请求数量的 CPU 资源。

    • 官网参考地址: 为容器和 Pods 分配 CPU 资源 | Kubernetes

请求 request memory cpu :可以使用的基础资源 100M

限制 limit memory cpu :可以使用的最大资源 200M 超过最大资源之后容器会被 kill , OOM 错误

1 metrics-server

官网地址: GitHub - kubernetes-sigs/metrics-server: Scalable and efficient source of container resource metrics for Kubernetes built-in autoscaling pipelines.

Kubernetes Metrics Server (Kubernetes指标服务器),它是一个可扩展的、高效的容器资源度量源。Metrics Server 用于监控每个 Node 和 Pod 的负载(用于Kubernetes内置自动扩缩管道)。Metrics Server 从Kubelets 收集资源指标,并通过 Metrics API 在Kubernetes apiserver中公开,供 Horizontal Pod Autoscaler 和 Vertical Pod Autoscaler 使用。Metrics API 也可以通过 kubectl top 访问,使其更容易调试自动扩缩管道。

  • 查看 metrics-server(或者其他资源指标 API metrics.k8s.io 服务提供者)是否正在运行, 请键入以下命令:

kubectl get apiservices
  • 如果资源指标 API 可用,则会输出将包含一个对 metrics.k8s.io 的引用。

NAME
v1beta1.metrics.k8s.io
  • 安装 metrics-server

# components.yaml
apiVersion: v1
kind: ServiceAccount
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-serverrbac.authorization.k8s.io/aggregate-to-admin: "true"rbac.authorization.k8s.io/aggregate-to-edit: "true"rbac.authorization.k8s.io/aggregate-to-view: "true"name: system:aggregated-metrics-reader
rules:- apiGroups:- metrics.k8s.ioresources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-servername: system:metrics-server
rules:- apiGroups:- ""resources:- nodes/metricsverbs:- get- apiGroups:- ""resources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server-auth-readernamespace: kube-system
roleRef:apiGroup: rbac.authorization.k8s.iokind: Rolename: extension-apiserver-authentication-reader
subjects:- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server:system:auth-delegator
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:auth-delegator
subjects:- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: system:metrics-server
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:metrics-server
subjects:- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: v1
kind: Service
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:ports:- name: httpsport: 443protocol: TCPtargetPort: httpsselector:k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:selector:matchLabels:k8s-app: metrics-serverstrategy:rollingUpdate:maxUnavailable: 0template:metadata:labels:k8s-app: metrics-serverspec:containers:- args:- --cert-dir=/tmp- --secure-port=4443- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname- --kubelet-use-node-status-port- --metric-resolution=15s- --kubelet-insecure-tls #修改去掉证书验证image: dyrnq/metrics-server:v0.6.2 #修改官方无法下载imagePullPolicy: IfNotPresentlivenessProbe:failureThreshold: 3httpGet:path: /livezport: httpsscheme: HTTPSperiodSeconds: 10name: metrics-serverports:- containerPort: 4443name: httpsprotocol: TCPreadinessProbe:failureThreshold: 3httpGet:path: /readyzport: httpsscheme: HTTPSinitialDelaySeconds: 20periodSeconds: 10resources:requests:cpu: 100mmemory: 200MisecurityContext:allowPrivilegeEscalation: falsereadOnlyRootFilesystem: truerunAsNonRoot: truerunAsUser: 1000volumeMounts:- mountPath: /tmpname: tmp-dirhostNetwork: true  #必须指定这个才行nodeSelector:kubernetes.io/os: linuxpriorityClassName: system-cluster-criticalserviceAccountName: metrics-servervolumes:- emptyDir: {}name: tmp-dir
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:labels:k8s-app: metrics-servername: v1beta1.metrics.k8s.io
spec:group: metrics.k8s.iogroupPriorityMinimum: 100insecureSkipTLSVerify: trueservice:name: metrics-servernamespace: kube-systemversion: v1beta1versionPriority: 100
$ kubectl appply -f components.yaml
2 指定内存请求和限制

官网: 为容器和 Pod 分配内存资源 | Kubernetes

为容器指定内存请求,请在容器资源清单中包含 resources:requests 字段。 同理,要指定内存限制,请包含 resources:limits

# nginx-memory-demo.yaml
#内存资源的基本单位是字节(byte)。你可以使用这些后缀之一,将内存表示为 纯整数或定点整数:E、P、T、G、M、K、Ei、Pi、Ti、Gi、Mi、Ki。 例如,下面是一些近似相同的值:128974848, 129e6, 129M, 123Mi
apiVersion: v1
kind: Pod
metadata:name: nginx-memory-demo
spec:containers:- name: nginx-memory-demoimage: nginx:1.19resources:requests:memory: "100Mi" limits:memory: "200Mi"
  • 查看容器内存使用情况

$ kubectl get pod nginx-memory-demo --output=yaml
  • 查看容器正在使用内存情况

$ kubectl top pod nginx-memory-demo 
  • 内存请求和限制的目的

    通过为集群中运行的容器配置内存请求和限制,你可以有效利用集群节点上可用的内存资源。 通过将 Pod 的内存请求保持在较低水平,你可以更好地安排 Pod 调度。 通过让内存限制大于内存请求,你可以完成两件事:

    • Pod 可以进行一些突发活动,从而更好的利用可用内存。

    • Pod 在突发活动期间,可使用的内存被限制为合理的数量。

  • 没有指定内存限制

    如果你没有为一个容器指定内存限制,则自动遵循以下情况之一:

    • 容器可无限制地使用内存。容器可以使用其所在节点所有的可用内存, 进而可能导致该节点调用 OOM Killer。 此外,如果发生 OOM Kill,没有资源限制的容器将被杀掉的可行性更大。

    • 运行的容器所在命名空间有默认的内存限制,那么该容器会被自动分配默认限制。

3 指定 CPU 请求和限制

官网: 为容器和 Pods 分配 CPU 资源 | Kubernetes

为容器指定 CPU 请求,请在容器资源清单中包含 resources: requests 字段。 要指定 CPU 限制,请包含 resources:limits

# nginx-cpu-demo.yaml
#CPU 资源以 CPU 单位度量。小数值是可以使用的。一个请求 0.5 CPU 的容器保证会获得请求 1 个 CPU 的容器的 CPU 的一半。 你可以使用后缀 m 表示毫。例如 100m CPU、100 milliCPU 和 0.1 CPU 都相同。 CPU 请求只能使用绝对数量,而不是相对数量。0.1 在单核、双核或 48 核计算机上的 CPU 数量值是一样的。
apiVersion: v1
kind: Pod
metadata:name: nginx-cpu-demo
spec:containers:- name: nginx-cpu-demoimage: nginx:1.19resources:limits:cpu: "1"requests:cpu: "0.5"
  • 显示 pod 详细信息

$ kubectl get pod nginx-cpu-demo --output=yaml 
  • 显示 pod 运行指标

$ kubectl top pod nginx-cpu-demo
  • CPU 请求和限制的初衷

    通过配置你的集群中运行的容器的 CPU 请求和限制,你可以有效利用集群上可用的 CPU 资源。 通过将 Pod CPU 请求保持在较低水平,可以使 Pod 更有机会被调度。 通过使 CPU 限制大于 CPU 请求,你可以完成两件事:

    • Pod 可能会有突发性的活动,它可以利用碰巧可用的 CPU 资源。

    • Pod 在突发负载期间可以使用的 CPU 资源数量仍被限制为合理的数量。

  • 如果不指定 CPU 限制

    如果你没有为容器指定 CPU 限制,则会发生以下情况之一:

    • 容器在可以使用的 CPU 资源上没有上限。因而可以使用所在节点上所有的可用 CPU 资源。

    • 容器在具有默认 CPU 限制的名字空间中运行,系统会自动为容器设置默认限制。

  • 如果你设置了 CPU 限制但未设置 CPU 请求

如果你为容器指定了 CPU 限制值但未为其设置 CPU 请求,Kubernetes 会自动为其 设置与 CPU 限制相同的 CPU 请求值。类似的,如果容器设置了内存限制值但未设置 内存请求值,Kubernetes 也会为其设置与内存限制值相同的内存请求。

http://www.lryc.cn/news/118306.html

相关文章:

  • java Long型数据返回到前端失进度问题解决
  • 【设计模式】-策略模式:优雅处理条件逻辑
  • SpringBoot整合多数据源
  • CLIP论文精度
  • LouvainMethod分布式运行的升级之路
  • 【Node.js】低代码平台源码
  • docker 部署 xxl-job-admin
  • c++(空间配置器)[32]
  • Linux系列之解压文件
  • 为什么重写equals方法时必须重写hashcode方法
  • java导入excel图片处理
  • 【Rust】Rust学习 第四章认识所有权
  • 学习C语言第三天 :关系操作符、逻辑操作符
  • Jenkins自动化打包脚本
  • 一百五十、Kettle——Kettle官网下载地址
  • 使用 Visual Studio Code 调试 CMake 脚本
  • 【云原生】Docker 详解(二):Docker 架构及工作原理
  • 微服务 云原生:基于 Gogs + Drone 实现 CI/CD 自动化
  • ADO.NET之SQL Server
  • Nginx负载均衡(重点)
  • 第一章 SpringBoot入门
  • JavaScript Es6_2笔记 (深入对象 + 内置构造函数 + 包装类型)+包含实例方法
  • 尼科彻斯定理
  • 主数据管理案例-中国外运
  • 改进DevSecOps框架的 5 大关键技术
  • uni-app之app上传pdf类型文件
  • bash: sudo: command not found的解决方法 | 安装sudo
  • 电脑合上盖子无线网络不会断开
  • 【从零开始学习JAVA | 第四十篇】了解线程池
  • axios如何取消请求,其原理是什么?