当前位置: 首页 > news >正文

小X学游泳(深搜)

第一题

题目描述

小X想要学游泳。
这天,小X来到了游泳池,发现游泳池可以用N行M列的格子来表示,每个格子的面积都是1,且格子内水深相同。
由于小X刚刚入门,他只能在水深相同的地方游泳。为此,他把整个游泳池看成若干片区域,如果两个格子相邻(上下左右四个方向)且水深相同,他就认为它们属于同一片区域。
小X想知道最大的一片区域面积是多少,希望你帮帮他。

输入

第一行包含用一个空格隔开的两个整数N,M。(1≤N,M≤100)
接下来N行,每行包含M个 1到9的数字,表示每个格子的水深

输出

第一行包含一个整数,表示最大的一片区域面积。

样例

输入

3 3
124
224
152

输出

3

连接

搜出每个连通块的大小再比谁最大

#include <bits/stdc++.h>
using namespace std;
int c , n , m ,ans;
char a[110][110];
bool f[110][110];
int fx[5] = {0 , 0 , 1 , 0 , -1},fy[5] = {0 , 1 , 0 , -1 , 0};
void dfs( int x , int y ){f[x][y] = true;c++;int tx , ty;for ( int i = 1 ; i <= 4 ; i++ ){tx = x + fx[i];ty = y + fy[i];if (a[tx][ty] == a[x][y] && f[tx][ty] == false )dfs(tx , ty);}
}
int main(){cin >> n >> m;for ( int i = 1 ; i <= n ; i++ )for ( int j = 1 ; j <= m ; j++ )cin >> a[i][j];for ( int i = 1 ; i <= n ; i++ ){for ( int j = 1 ; j <= m ; j++ ){if(f[i][j] == false){c = 0;dfs(i , j);ans = max(c , ans);}}}cout << ans << endl;return 0;
}
题目描述
暑假快到啦,小 X 准备趁着这个暑假去学游泳。可是一开始小 X 就遇到了一个难题。
游泳池划分成了一个 n×m 的方格, 这里 n×m 表示 n 行 m 列。 因 为游泳池里的水深浅不一,所以这n×m 个方格对于小 X 的危险系数也会不一样。
而小 X 目前需要从左上角 的方格 (1,1)(1,1) 出发, 游到右下角 的方格 (n,m),小 X 每次只 能从当前方格游到上下左右四个相邻的方格中的某一格,并且在到达终点前不能离开游泳池。
小 X 很担心会发生什么危险,所以希望你能帮他找一条危险系数最小的路径。
一条路径的危险系数定义为这条路径所经过的方格的危险系数之和。
注意:这条路径不能经过同一个方格两次(小 X 当然不希望去那么危险的地方再游一次)
输入
输入数据第一行有两个用空格隔开的正整数 n 和 m, 表示泳池的行数和列数。
接下来共有 n 行数据,每行有 m 个用空格隔开的大于等于 00 的整数, 表示每个方格的危险系数
输出
输出仅有一行包含一个整数 ans , 表示要求的从左上角的方格 (1,1)(1,1) 出发, 游到右下角的方格 (n,m) 的最小的危险系数。
样例
输入
4 5
1 7 2 8 2
3 10 1 5 1
2 8 3 7 1
1 2 1 20 1
输出
19

 链接

 用sum来存储危险系数和,d数组来存每一步危险系数最小和,return前再比较一下

#include <bits/stdc++.h>
using namespace std;
int n , m ,ans = INT_MAX, f[110][110] , d[110][110];
int a[110][110];
void dfs( int x , int y , int sum ){if(!f[x][y] || sum>=ans || sum>=d[x][y]) return;if(x==n && y ==m){ans = min(ans,sum);return;}d[x][y] = min(d[x][y],sum);f[x][y] = 0;dfs(x+1,y,sum+a[x+1][y]);dfs(x-1,y,sum+a[x-1][y]);dfs(x,y+1,sum+a[x][y+1]);dfs(x,y-1,sum+a[x][y-1]);f[x][y] = 1;}
int main(){scanf("%d%d" , &n , &m);for ( int i = 1 ; i <= n ; i++ )for ( int j = 1 ; j <= m ; j++ ){scanf("%d" , &a[i][j]);d[i][j] = INT_MAX;f[i][j] = 1;}	dfs(1,1,a[1][1]);printf("%d" , ans);	return 0;
}

 

http://www.lryc.cn/news/115780.html

相关文章:

  • 分布式协议与算法——拜占庭将军问题
  • MySQL数据库管理的基本原则和技巧
  • SQL-每日一题【1193. 每月交易 I】
  • 探析青少年口才训练在个人发展中的重要性与影响
  • HTML 元素的 class 和 id 属性有何区别?
  • 关于GKPhoto点击放大没有图片只有缺省图
  • 建议收藏!总结了 42 种前端常用布局方案
  • spring AOP两种动态代理
  • 英语——副词
  • Vue 本地应用 记事本 v-on v-model v-for使用
  • 智能质检技术的核心环节:语音识别和自然语言处理
  • Python 中的值传递 和 引用传递
  • 【雕爷学编程】Arduino动手做(200)---WS2812B幻彩LED灯带6
  • ChatGPT在工作中的七种用途
  • redis 持久化 与 键淘汰策略
  • PyCharm新手入门指南
  • 【图像去噪】基于混合自适应(EM 自适应)实现自适应图像去噪研究(Matlab代码实现)
  • [保研/考研机试] KY102 计算表达式 上海交通大学复试上机题 C++实现
  • 源码解析Collections.sort ——从一个逃过单测的 bug 说起
  • 一周 AIGC 丨苹果下架多款 AIGC 应用,阿里云开源通义千问 70 亿参数模型
  • tomcat虚拟主机配置演示
  • Nacos基本应用
  • UML的类图规则
  • uniapp实现微信小程序长按二维码扫码加群或好友
  • 轮转数组(每日一题)
  • jmeter使用步骤
  • Ts中泛型的理解与使用
  • uniapp使用eatchs雷达图
  • PostgreSQL jsonb
  • Spring系列四:AOP切面编程