当前位置: 首页 > news >正文

【IDEA + Spark 3.4.1 + sbt 1.9.3 + Spark MLlib 构建鸢尾花决策树分类预测模型】

决策树进行鸢尾花分类的案例

背景说明:

通过IDEA + Spark 3.4.1 + sbt 1.9.3 + Spark MLlib 构建鸢尾花决策树分类预测模型,这是一个分类模型案例,通过该案例,可以快速了解Spark MLlib分类预测模型的使用方法。

依赖

ThisBuild / version := "0.1.0-SNAPSHOT"  ThisBuild / scalaVersion := "2.13.11"  lazy val root = (project in file("."))  .settings(  name := "SparkLearning",  idePackagePrefix := Some("cn.lh.spark"),  libraryDependencies += "org.apache.spark" %% "spark-sql" % "3.4.1",  libraryDependencies += "org.apache.spark" %% "spark-core" % "3.4.1",  libraryDependencies += "org.apache.hadoop" % "hadoop-auth" % "3.3.6",     libraryDependencies += "org.apache.spark" %% "spark-streaming" % "3.4.1",  libraryDependencies += "org.apache.spark" %% "spark-streaming-kafka-0-10" % "3.4.1",  libraryDependencies += "org.apache.spark" %% "spark-mllib" % "3.4.1",  libraryDependencies += "mysql" % "mysql-connector-java" % "8.0.30"  
)

完整代码

package cn.lh.spark  import org.apache.spark.ml.{Pipeline, PipelineModel}  
import org.apache.spark.ml.classification.{DecisionTreeClassificationModel, DecisionTreeClassifier}  
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator  
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, StringIndexerModel, VectorIndexer, VectorIndexerModel}  
import org.apache.spark.ml.linalg.Vectors  
import org.apache.spark.rdd.RDD  
import org.apache.spark.sql.{DataFrame, SparkSession}  /**  * 决策树分类器,实现鸢尾花分类  */  //case class Iris(features: org.apache.spark.ml.linalg.Vector, label: String)  // MLlibLogisticRegression 中存在该样例类,这里不用写,一个包里不存在这个样例类时需要写object MLlibDecisionTreeClassifier {  def main(args: Array[String]): Unit = {  val spark: SparkSession = SparkSession.builder().master("local[2]")  .appName("Spark MLlib DecisionTreeClassifier").getOrCreate()  val irisRDD: RDD[Iris] = spark.sparkContext.textFile("F:\\niit\\2023\\2023_2\\Spark\\codes\\data\\iris.txt")  .map(_.split(",")).map(p =>  Iris(Vectors.dense(p(0).toDouble, p(1).toDouble, p(2).toDouble, p(3).toDouble), p(4).toString()))  import spark.implicits._  val data: DataFrame = irisRDD.toDF()  data.show()  data.createOrReplaceTempView("iris")  val df: DataFrame = spark.sql("select * from iris")  println("鸢尾花原始数据如下:")  df.map(t => t(1)+":"+t(0)).collect().foreach(println)  //    处理特征和标签,以及数据分组  val labelIndexer: StringIndexerModel = new StringIndexer().setInputCol("label").setOutputCol(  "indexedLabel").fit(df)  val featureIndexer: VectorIndexerModel = new VectorIndexer().setInputCol("features")  .setOutputCol("indexedFeatures").setMaxCategories(4).fit(df)  //这里我们设置一个labelConverter,目的是把预测的类别重新转化成字符型的  val labelConverter: IndexToString = new IndexToString().setInputCol("prediction")  .setOutputCol("predictedLabel").setLabels(labelIndexer.labels)  //接下来,我们把数据集随机分成训练集和测试集,其中训练集占70%。  val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))  val dtClassifier: DecisionTreeClassifier = new DecisionTreeClassifier()  .setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures")  //在pipeline中进行设置  val pipelinedClassifier: Pipeline = new Pipeline()  .setStages(Array(labelIndexer, featureIndexer, dtClassifier, labelConverter))  //训练决策树模型  val modelClassifier: PipelineModel = pipelinedClassifier.fit(trainingData)  //进行预测  val predictionsClassifier: DataFrame = modelClassifier.transform(testData)  predictionsClassifier.select("predictedLabel", "label", "features").show(5)  //    评估决策树分类模型  val evaluatorClassifier: MulticlassClassificationEvaluator = new MulticlassClassificationEvaluator()  .setLabelCol("indexedLabel")  .setPredictionCol("prediction").setMetricName("accuracy")  val accuracy: Double = evaluatorClassifier.evaluate(predictionsClassifier)  println("Test Error = " + (1.0 - accuracy))  val treeModelClassifier: DecisionTreeClassificationModel = modelClassifier.stages(2)  .asInstanceOf[DecisionTreeClassificationModel]  println("Learned classification tree model:\n" + treeModelClassifier.toDebugString)  spark.stop()  }  }

![[Pasted image 20230807184336.png]]

http://www.lryc.cn/news/115455.html

相关文章:

  • 亚马逊 EC2服务器下部署java环境
  • CTF流量题解http1.pcapng
  • 若依vue前端有全局用户信息变量吗
  • 什么是Milvus
  • 如何快速实现三菱FX3U程序的无线下载?
  • Flink源码之RPC
  • 【LeetCode 75】第二十四题(2390)从字符串中移除星号
  • 通向架构师的道路之weblogic的集群与配置
  • SpringBoot 项目创建与运行
  • FOHEART H1数据手套:连接虚拟与现实,塑造智能交互新未来
  • MyBatis学习笔记3
  • ES6学习-Symbol
  • 【Redis】使用Docker镜像配置集群时的Operation timed out问题
  • Java 生产初学常用注解
  • mousedown拖拽功能(vue3+ts)
  • 【论文阅读】基于深度学习的时序异常检测——TransAD
  • NLPCC 出版部分相关源码记录
  • 【Windbg】通过网络调试windows内核
  • 代码随想录算法训练营之JAVA|第二十四天| 93. 复原 IP 地址
  • 网络安全 Day30-运维安全项目-堡垒机部署
  • 电脑文件夹备份命令
  • RocketMQ Learning(一)
  • libmpv使用滤镜处理视频进行播放
  • Harbor.cfg 配置文件参数详解
  • 模仿火星科技 基于cesium+ 贴地测量+可编辑
  • 模仿火星科技 基于cesium+角度测量+高度测量+可编辑
  • Codeforces の 动态规划
  • 数学建模-爬虫系统学习
  • HarmonyOS/OpenHarmony应用开发-ArkTS语言渲染控制概述
  • 【力扣刷题 | 第二十五天】