当前位置: 首页 > news >正文

pytorch求导

pytorch求导的初步认识

requires_grad

tensor(data, dtype=None, device=None, requires_grad=False)

requires_grad是torch.tensor类的一个属性。如果设置为True,它会告诉PyTorch跟踪对该张量的操作,允许在反向传播期间计算梯度。

x.requires_grad    判断一个tensor是否可以求导,返回布尔值

叶子变量-leaf variable

  • 对于requires_grad=False 的张量,我们约定俗成地把它们归为叶子张量。
  • 对于requires_grad为True的张量,如果他们是由用户创建的,则它们是叶张量。

 如果某一个叶子变量,开始时不可导的,后面想设置它可导,该怎么办?

x.requires_grad_(True/False)   设置tensor的可导与不可导

注意:这种方法只适用于设置叶子变量,否则会出现如下错误

x = torch.tensor(2.0, requires_grad=True)
y = torch.pow(x, 2)
z = torch.add(y, 3)
z.backward()
print(x.grad)
print(y.grad)
tensor(4.)
None
  1. 创建一个浮点型张量x,其值为2.0,并设置requires_grad=True,使PyTorch可以跟踪x的计算历史并允许计算它的梯度。

  2. 创建一个新张量y,y是x的平方。

  3. 创建一个新张量z,z是y和3的和。

  4. 调用z.backward()进行反向传播,计算z关于x的梯度。

  5. 打印x的梯度,应该是2*x=4.0。

  6. 试图打印y的梯度。但是,PyTorch默认只计算并保留叶子节点的梯度非叶子节点的梯度在计算过程中会被释放掉,因此y的梯度应该为None。

保留中间变量的梯度

tensor.retain_grad()

 retain_grad()retain_graph是用来处理两个不同的情况

  1. retain_grad(): 用于保留非叶子节点的梯度。如果你想在反向传播结束后查看或使用非叶子节点的梯度,你应该在非叶子节点上调用.retain_grad()

  2. retain_graph: 当你调用.backward()时,PyTorch会自动清除计算图以释放内存。这意味着你不能在同一个计算图上多次调用.backward()。但是,如果你需要多次调用.backward()(例如在某些特定的优化算法中),你可以在调用.backward()时设置retain_graph=True保留计算图

.grad

通过tensor的grad属性查看所求得的梯度值。

.grad_fn

在PyTorch中,.grad_fn属性是一个引用到创建该Tensor的Function对象。也就是说,这个属性可以告诉你这个张量是如何生成的。对于由用户直接创建的张量,它的.grad_fnNone。对于由某个操作创建的张量,.grad_fn将引用到一个与这个操作相关的对象

import torchx = torch.tensor([1.0, 2.0], requires_grad=True)
y = x * 2
z = y.mean()print(x.grad_fn)
print(y.grad_fn)
print(z.grad_fn)

这里,x是由用户直接创建的,所以x.grad_fnNoney是通过乘法操作创建的,所以y.grad_fn是一个MulBackward0对象,这表明y是通过乘法操作创建的。z是通过求平均数操作创建的,所以z.grad_fn是一个MeanBackward0对象。

 pytorch自动求导实现神经网络

numpy手动实现

import numpy as np
import matplotlib.pyplot as pltN, D_in, H, D_out = 64, 1000, 100, 10  # 64个训练数据(只是一个batch),输入是1000维,hidden是100维,输出是10维'''随机创建一些训练数据'''
X = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)W1 = np.random.randn(D_in, H)  # 1000维转成100维
W2 = np.random.randn(H, D_out)  # 100维转成10维learning_rate = 1e-6all_loss = []epoch = 500for t in range(500):  # 做500次迭代'''前向传播(forward pass)'''h = X.dot(W1)  # N * Hh_relu = np.maximum(h, 0)  # 激活函数,N * Hy_hat = h_relu.dot(W2)  # N * D_out'''计算损失函数(compute loss)'''loss = np.square(y_hat - y).sum()  # 均方误差,忽略了÷Nprint("Epoch:{}   Loss:{}".format(t, loss))  # 打印每个迭代的损失all_loss.append(loss)'''后向传播(backward pass)'''# 计算梯度(此处没用torch,用最普通的链式求导,最终要得到 d{loss}/dX)grad_y_hat = 2.0 * (y_hat - y)  # d{loss}/d{y_hat},N * D_outgrad_W2 = h_relu.T.dot(grad_y_hat)  # 看前向传播中的第三个式子,d{loss}/d{W2},H * D_outgrad_h_relu = grad_y_hat.dot(W2.T)  # 看前向传播中的第三个式子,d{loss}/d{h_relu},N * Hgrad_h = grad_h_relu.copy()  # 这是h>0时的情况,d{h_relu}/d{h}=1grad_h[h < 0] = 0  # d{loss}/d{h}grad_W1 = X.T.dot(grad_h)  # 看前向传播中的第一个式子,d{loss}/d{W1}'''参数更新(update weights of W1 and W2)'''W1 -= learning_rate * grad_W1W2 -= learning_rate * grad_W2plt.plot(all_loss)
plt.xlabel("epoch")
plt.ylabel("Loss")
plt.show()

pytorch自动实现

import torchN, D_in, H, D_out = 64, 1000, 100, 10  # 64个训练数据(只是一个batch),输入是1000维,hidden是100维,输出是10维'''随机创建一些训练数据'''
X = torch.randn(N, D_in)
y = torch.randn(N, D_out)W1 = torch.randn(D_in, H, requires_grad=True)  # 1000维转成100维
W2 = torch.randn(H, D_out, requires_grad=True)  # 100维转成10维learning_rate = 1e-6for t in range(500):  # 做500次迭代'''前向传播(forward pass)'''y_hat = X.mm(W1).clamp(min=0).mm(W2)  # N * D_out'''计算损失函数(compute loss)'''loss = (y_hat - y).pow(2).sum()  # 均方误差,忽略了÷N,loss就是一个计算图(computation graph)print("Epoch:{}   Loss:{}".format(t, loss.item()))  # 打印每个迭代的损失'''后向传播(backward pass)'''loss.backward()'''参数更新(update weights of W1 and W2)'''with torch.no_grad():W1 -= learning_rate * W1.gradW2 -= learning_rate * W2.gradW1.grad.zero_()W2.grad.zero_()

pytorch手动实现

import torch
import matplotlib.pyplot as pltN, D_in, H, D_out = 64, 1000, 100, 10  # 64个训练数据(只是一个batch),输入是1000维,hidden是100维,输出是10维'''随机创建一些训练数据'''
X = torch.randn(N, D_in)
y = torch.randn(N, D_out)W1 = torch.randn(D_in, H)  # 1000维转成100维
W2 = torch.randn(H, D_out)  # 100维转成10维learning_rate = 1e-6all_loss = []for t in range(500):  # 做500次迭代'''前向传播(forward pass)'''h = X.mm(W1)  # N * Hh_relu = h.clamp(min=0)  # 激活函数,N * Hy_hat = h_relu.mm(W2)  # N * D_out'''计算损失函数(compute loss)'''loss = (y_hat - y).pow(2).sum().item()  # 均方误差,忽略了÷Nprint("Epoch:{}   Loss:{}".format(t, loss))  # 打印每个迭代的损失all_loss.append(loss)'''后向传播(backward pass)'''# 计算梯度(此处没用torch,用最普通的链式求导,最终要得到 d{loss}/dX)grad_y_hat = 2.0 * (y_hat - y)  # d{loss}/d{y_hat},N * D_outgrad_W2 = h_relu.t().mm(grad_y_hat)  # 看前向传播中的第三个式子,d{loss}/d{W2},H * D_outgrad_h_relu = grad_y_hat.mm(W2.t())  # 看前向传播中的第三个式子,d{loss}/d{h_relu},N * Hgrad_h = grad_h_relu.clone()  # 这是h>0时的情况,d{h_relu}/d{h}=1grad_h[h < 0] = 0  # d{loss}/d{h}grad_W1 = X.t().mm(grad_h)  # 看前向传播中的第一个式子,d{loss}/d{W1}'''参数更新(update weights of W1 and W2)'''W1 -= learning_rate * grad_W1W2 -= learning_rate * grad_W2plt.plot(all_loss)
plt.xlabel("epoch")
plt.ylabel("Loss")
plt.show()

torch.nn实现

import torch
import torch.nn as nn  # 各种定义 neural network 的方法N, D_in, H, D_out = 64, 1000, 100, 10  # 64个训练数据(只是一个batch),输入是1000维,hidden是100维,输出是10维'''随机创建一些训练数据'''
X = torch.randn(N, D_in)
y = torch.randn(N, D_out)model = torch.nn.Sequential(torch.nn.Linear(D_in, H, bias=True),  # W1 * X + b,默认Truetorch.nn.ReLU(),torch.nn.Linear(H, D_out)
)# model = model.cuda()  #这是使用GPU的情况loss_fn = nn.MSELoss(reduction='sum')learning_rate = 1e-4for t in range(500):  # 做500次迭代'''前向传播(forward pass)'''y_hat = model(X)  # model(X) = model.forward(X), N * D_out'''计算损失函数(compute loss)'''loss = loss_fn(y_hat, y)  # 均方误差,忽略了÷N,loss就是一个计算图(computation graph)print("Epoch:{}   Loss:{}".format(t, loss.item()))  # 打印每个迭代的损失'''后向传播(backward pass)'''loss.backward()'''参数更新(update weights of W1 and W2)'''with torch.no_grad():for param in model.parameters():param -= learning_rate * param.grad  # 模型中所有的参数更新model.zero_grad()

torch.nn的继承类

import torch
import torch.nn as nn  # 各种定义 neural network 的方法
from torchsummary import summary
# pip install torchsummary
N, D_in, H, D_out = 64, 1000, 100, 10  # 64个训练数据(只是一个batch),输入是1000维,hidden是100维,输出是10维'''随机创建一些训练数据'''
X = torch.randn(N, D_in)
y = torch.randn(N, D_out)'''定义两层网络'''class TwoLayerNet(torch.nn.Module):def __init__(self, D_in, H, D_out):super(TwoLayerNet, self).__init__()# 定义模型结构self.linear1 = torch.nn.Linear(D_in, H, bias=False)self.linear2 = torch.nn.Linear(H, D_out, bias=False)def forward(self, x):y_hat = self.linear2(self.linear1(X).clamp(min=0))return y_hatmodel = TwoLayerNet(D_in, H, D_out)loss_fn = nn.MSELoss(reduction='sum')
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)for t in range(500):  # 做500次迭代'''前向传播(forward pass)'''y_hat = model(X)  # model.forward(), N * D_out'''计算损失函数(compute loss)'''loss = loss_fn(y_hat, y)  # 均方误差,忽略了÷N,loss就是一个计算图(computation graph)print("Epoch:{}   Loss:{}".format(t, loss.item()))  # 打印每个迭代的损失optimizer.zero_grad()  # 求导之前把 gradient 清空'''后向传播(backward pass)'''loss.backward()'''参数更新(update weights of W1 and W2)'''optimizer.step()  # 一步把所有参数全更新print(summary(model, (64, 1000)))

http://www.lryc.cn/news/114628.html

相关文章:

  • Java基础异常详解
  • vue3+vue-i18n 监听语言的切换
  • 【考研复习】24王道数据结构课后习题代码|2.3线性表的链式表示
  • 娇滴滴的一朵花(Python实现)
  • Android AccessibilityService研究
  • 华为OD机试(含B卷)真题2023 算法分类版,58道20个算法分类,如果距离机考时间不多了,就看这个吧,稳稳的
  • JMeter命令行执行+生成HTML报告
  • 学习Boost二:从附录3来看编码习惯
  • STM32基础入门学习笔记:核心板 电路原理与驱动编程
  • 最后一次模拟考试题解
  • Mac 创建和删除 Automator 工作流程,设置 Terminal 快捷键
  • 2023华为OD机试真题B卷 Java 实现【最长的元音串】
  • 网络防御之传输安全
  • 【css】组合器
  • HTTPS、TLS加密传输
  • docker frp 搭建 http + stcp 代理
  • 项目出bug,找不到bug,如何拉回之前的版本
  • vue-cli
  • android获取屏幕分辨率的正确方法;获取到分辨率(垂直方向像素)的不正确
  • 机器学习笔记之优化算法(八)简单认识Wolfe Condition的收敛性证明
  • 通过win+r安装jupyter报错
  • C#声明一个带返回值的委托
  • Flutter 自定义view
  • Ubuntu新装系统报错:sudo: vim:找不到命令
  • Vue3自定义简单的Swiper滑动组件-触控板滑动鼠标滑动左右箭头滑动-demo
  • 三个主流数据库(Oracle、MySQL和SQL Server)的“单表造数
  • TypeScript 中【class类】与 【 接口 Interfaces】的联合搭配使用解读
  • JavaWeb 手写Tomcat底层机制
  • Gof23设计模式之组合模式
  • 龙芯积极研发二进制翻译,提升软硬件兼容性,提高LoongArch架构