当前位置: 首页 > news >正文

图像分类竞赛进阶技能:OpenAI-CLIP使用范例

OpenAI-CLIP

在这里插入图片描述

官方介绍

  • 尽管深度学习已经彻底改变了计算机视觉,但目前的方法存在几个主要问题:典型的视觉数据集是劳动密集型的,创建成本高,同时只教授一组狭窄的视觉概念;标准视觉模型擅长于一项任务且仅擅长于一项任务,并且需要大量的努力来适应新的任务;在基准测试中表现良好的模型在压力测试中的表现令人失望,1234对整个计算机视觉深度学习方法产生了怀疑。

  • 我们提出了一个旨在解决这些问题的神经网络:它是在各种各样的图像上训练的,有各种各样的自然语言监督,这些图像在互联网上随处可见。通过设计,可以用自然语言指导网络执行各种各样的分类基准测试,而不直接优化基准测试的性能,类似于GPT-25和GPT-3.6的“零镜头”功能。这是一个关键的变化:通过不直接优化基准测试,我们表明它变得更具代表性:我们的系统在不使用任何原始1.28M标记示例的情况下,在ImageNet零拍上与原始ResNet-507的性能匹配时,将这一“鲁棒性差距”缩小了75%。

CLIP使用示例

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import osimport cv2
import skimage
import IPython.display
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from glob import globfrom collections import OrderedDict
import torch
import gc%matplotlib inline
%config InlineBackend.figure_format = 'retina'

安装CLIP库

openai-clip-weights链接

!pip install ../input/openaiclipweights/python-ftfy-master/python-ftfy-master
!pip install ../input/openaiclipweights/clip/CLIP
!cp ../input/openaiclipweights/CLIP-main/CLIP-main/clip/bpe_simple_vocab_16e6.txt /opt/conda/lib/python3.7/site-packages/clip/.
!gzip -k /opt/conda/lib/python3.7/site-packages/clip/bpe_simple_vocab_16e6.txt
!ls /opt/conda/lib/python3.7/site-packages/clip/.import torch
import clip
from tqdm.notebook import tqdm
from torch.utils.data import DataLoader, Datasetprint("Torch version:", torch.__version__)
  • 下载几张图片用于测试
!wget https://farm8.staticflickr.com/6036/6426668771_b5b915e46c_o.jpg
!wget https://c6.staticflickr.com/8/7457/10806045045_02d3dbdcee_o.jpg
!wget https://c1.staticflickr.com/4/3267/2888764405_0a0a608604_o.jpg
!wget https://farm8.staticflickr.com/4028/4294212194_a49663b2b9_o.jpg
!wget https://c5.staticflickr.com/9/8173/8019508216_6540c8686a_o.jpg
!wget https://farm3.staticflickr.com/1146/1357102390_943c5cb999_o.jpg
  • 统计图片列表
files = glob('*.jpg')
print(files)![请添加图片描述](https://img-blog.csdnimg.cn/13db547da25a4f7fa7dc027d4535e93d.png)
  • 列出可用的CLIP预训练模型
clip.available_models()

请添加图片描述

  • 列出可用的CLIP预训练权重
!ls ../input/openaiclipweights/clip/CLIP/models/

请添加图片描述

  • 加载CLIP的基础视觉模型
model, preprocess = clip.load("../input/openaiclipweights/clip/CLIP/models/ViT-B-32.pt")
model.cuda().eval()

请添加图片描述

重头戏,对每一张图片我们可以提问问题,并且查看CLIP会做出什么样的回答

QUERIES = ["a dog","a cat","a elephant","a zebra","a sleeping dog","a sleeping cat","a giraffe","a poodle","animal inside a car","animal outside a car","a sofa","some animals","santa claus","ipod","two mugs","three mugs","blue sky",
] ```## 使用CLIP结合问题对图片进行打分```python
with torch.no_grad():for file in files:print(file)#加载图像数据img = Image.open(file).convert('RGB')#图片可视化plt.imshow(cv2.resize(np.array(img),(256,256)))plt.show()#使用clip对图片进行预处理img = preprocess(img).unsqueeze(0).cuda()#将图片进行编码image_embeddings = model.encode_image(img)image_embeddings/=image_embeddings.norm(dim=-1, keepdim = True)score = []#提问问题并且进行打分for query in QUERIES:text = clip.tokenize(query)cuda()#问题文本编码text_embeddings = model.encode_text(texts)text_embeddings /= text_embeddings.norm(dim=-1, keepdim=True)#计算图片和问题之间的匹配分数sc = float((image_embeddings @ text_embeddings.T).cpu().numpy())score.append(sc)print( pd.DataFrame({'query': QUERIES, 'score': score}).sort_values('score', ascending=False) )print('')print('-------------------------')print('')

请添加图片描述
请添加图片描述

数据集
petfinder-data

参考文章

OpenAI推出CLIP:连接文本与图像,Cover所有视觉分类任务
openai-CLIP

http://www.lryc.cn/news/11407.html

相关文章:

  • Metasploit框架基础(一)
  • pytorch零基础实现语义分割项目(二)——标签转换与数据加载
  • python(8.5)--列表习题
  • rt-thread pwm 多通道
  • C语言练习 | 初学者经典练习汇总
  • 华为OD机试 - 自动曝光(Python) | 机试题算法思路 【2023】
  • 「6」线性代数(期末复习)
  • 1.1 硬件与micropython固件烧录及自编译固件
  • 【MySQL进阶】视图 存储过程 触发器
  • [Linux篇] Linux常见命令和权限
  • 29岁从事功能测试被辞,面试2个月都找不到工作吗?
  • 【C#个人错题笔记1】
  • 基于lambda的mongodb查询插件
  • 基于微信小程序的微信社团小程序
  • GEE学习笔记 七十三:【GEE之Python版教程七】静态展示影像和动态展示影像
  • PGLBox全面解决图训练速度、成本、稳定性、复杂算法四大问题!
  • 超详细的 pytest 教程(一)使用入门篇
  • 二叉树理论基础知识点
  • 【算法基础】堆⭐⭐⭐
  • 时序预测 | MATLAB实现CNN-SVM卷积支持向量机时间序列预测
  • 【TypeScrip】TypeScrip的任意类型(Any 类型 和 unknown 顶级类型):
  • 智能洗地机什么牌子好?智能洗地机排行
  • 【数据结构与算法】链表1:移除链表 设计链表链表反转(双指针法、递归法)
  • 山东大学软件学院面向对象简答题整理【个人向】
  • JAVA时间类及JAVA8新时间类
  • ASEMI代理FGH60N60SFD,安森美FGH60N60SFD原装IGBT
  • 【云原生之Docker实战】使用dokcer部署web端vscode
  • Docker安装Tomcat、mysql、redis
  • 【python 基础篇 八】python的常用数据类型操作-------集合
  • Spring框架中问题补充