当前位置: 首页 > news >正文

我在leetcode用动态规划炒股

事情是这样的,突然兴起的我在letcode刷题

  • 121. 买卖股票的最佳时机
  • 122. 买卖股票的最佳时机 II
  • 123. 买卖股票的最佳时机 III

以上三题。

1. 121. 买卖股票的最佳时机

在这里插入图片描述

1.1. 暴力遍历,两次遍历

1.1.1. 算法代码

public class Solution {public int MaxProfit(int[] prices) {int profitValue=0;for(int i=0;i<prices.Length;i++){for(int j=i+1;j<prices.Length;j++){if(prices[j]>prices[i]){if(prices[j]-prices[i]>profitValue){profitValue=prices[j]-prices[i];}}}}return profitValue;}
}

上述代码的逻辑为两次遍历,后一个值比前一个值大,并使用哨兵变量profitValue记录最大差值。

1.1.2. 算法复杂度

  • 时间复杂度: O ( n 2 ) = n ∗ ( n − 1 ) 2 O(n^2)=\frac {n*(n-1)}{2} O(n2)=2n(n1)
  • 空间复杂度: O ( 1 ) O(1) O(1),因为只有哨兵变量profitValue

1.1.3. 算法问题

前面我们讲到,这个时间复杂度是 O ( n 2 ) O(n^2) O(n2),是一个指数函数。

那么在数据非常大的时候,其根据时间复杂度可以知道,其复杂度非常的高,如leetcode的超时案例

[886,729,539,474,5,653,588,198,313,111,38,808,848,364,819,747,520,568,583,253,605,442,779,903,217,284,927,33,859,75,418,612,174,316,167,40,945,740,174,279,985,133,38,919,528,844,101,291,673,561,.......
中间有3万个数值
.......561,644,484,868,53,936,186,35,219,84,455,971,922,862,434,553,948,857,491,622,162,934,66,486,569,690,596,506,452,635,690]

其时间复杂度是: 30000 ∗ 29999 / 2 = 449985000 30000*29999/2=449985000 3000029999/2=449985000,其计算数值大的可怕。

1.2. 一次遍历

1.2.1. 算法代码

public class Solution {public int MaxProfit(int[] prices) {int minprice = int.MaxValue;int maxprofit = 0;for (int i = 0; i < prices.Length; i++) {if (prices[i] < minprice) {minprice = prices[i];} else if (prices[i] - minprice > maxprofit) {maxprofit = prices[i] - minprice;}}return maxprofit;}
}

其算法,基本思路是:在最低点购入,在最高点卖出,由于for循环是从0开始的,所以其每一次minprice是当前时点前最低点购入值,故此算法可靠

1.2.2. 算法复杂度

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) = 2 O(1)=2 O(1)=2

2.2 122. 买卖股票的最佳时机 II

在这里插入图片描述

第一题相较比较简单,而第二题中增加了一个限定:可以购买多次,只是手上最多只有一支股票

2.1. 贪心算法

2.1.1. 算法代码

public class Solution {public int MaxProfit(int[] prices) {int ans = 0;int n = prices.Length;for (int i = 1; i < n; ++i) {int diffPrice=prices[i] - prices[i - 1];if(diffPrice>0){ans += diffPrice;}}return ans;}
}

2.1.2. 算法思路与步骤

只要后一天的价格比今天高,那么我今天就买,后一天就卖。

在这里插入图片描述

2.1.3. 算法复杂度

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) = 2 O(1)=2 O(1)=2

2.2. 动态规划算法

2.2.1. 算法代码

public class Solution {public int MaxProfit(int[] prices) {if (prices.Length < 2) {return 0;}int[] OwnStocks=new int[prices.Length];int[] NoStocks=new int[prices.Length];OwnStocks[0]=-prices[0];NoStocks[0]=0;for(int i=1;i<prices.Length;i++){OwnStocks[i]=Math.Max(OwnStocks[i-1],NoStocks[i-1]-prices[i]);NoStocks[i]=Math.Max(NoStocks[i-1],OwnStocks[i-1]+prices[i]);}return NoStocks[prices.Length-1];}
}

2.2.2. 算法思路与步骤

  • 由于不可以同时存在多支股票,所以每天只有可能有两种状态有股票没有股票
  • 第一天存在股票=0-第一天股票价值;第一天不存在股票=0(没有购买或者当天售出)
  • 后续每一天,当天有股票的最大利益=Math.Max(前一天有股票的值,前一天没有股票的值-当天股票值[购买股票])
  • 后续每一天,当前没有股票的最大利益=Math.Max(前一天没有股票的值,前一天有股票的值+当天股票值[卖出股票]`)

图解如下:

在这里插入图片描述

2.2.3. 算法复杂度

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) = 2 n O(n)=2n O(n)=2n

2.3. 123. 买卖股票的最佳时机 III

在这里插入图片描述

2.3.1. 动态规划算法

这一题就和第二题的动态规划类似,只是第二题是两个状态,而第三题是四个状态。

  • 没有买入
  • 第一次买入,没有卖出
  • 第一次买出,没有卖入
  • 第二次买入,没有卖出
  • 第二次买出

由于没有买入全程是0所以不做考虑,列出了5种,但实际上只有4种状态。

2.3.2. 算法代码

public class Solution {public int MaxProfit(int[] prices) {if(prices.Length<2){return 0;}int oneBuy=-prices[0];int oneSale=0;int twoBuy=-prices[0];int twoSale=0;for(int i=1;i<prices.Length;i++){oneBuy=Math.Max(oneBuy,-prices[i]);oneSale=Math.Max(oneSale,oneBuy+prices[i]);twoBuy=Math.Max(twoBuy,oneSale-prices[i]);twoSale=Math.Max(twoSale,twoBuy+prices[i]);}return twoSale;}
}

2.3.3. 算法复杂度

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) = 4 O(1)=4 O(1)=4
http://www.lryc.cn/news/113814.html

相关文章:

  • rust实践-异步并发socket通信
  • SolidUI社区-根据Prompt打造人设
  • 设计模式行为型——观察者模式
  • Kernel Exception导致手机重启案例分析
  • C++入门篇5---模板
  • L2CS-Net: 3D gaze estimation
  • kenernetes/k8s笔试面试
  • 我们真的是在做数据治理吗
  • 聊聊汽车电子的话题
  • ThinkPHP6企业OA办公系统
  • PPS Tester测量原理和实施方法
  • 浅谈新电改背景下电网企业综合能源服务商业模式研究及发展方向
  • SpringBoot + Docker 实现一次构建到处运行~
  • clang-format格式化代码
  • 品牌宣传与媒体传播是声誉管理的主要方式之一
  • 2023年8月7日-8月13日,(上午熟悉公司代码,周一到周五晚上优先工作所急视频教程,其他业余时间进行ue视频教程,为独立游戏做准备)
  • Vue3 第二节 Vue3的响应式
  • 通过easyui实现动态控制表格字段显示、导出表格数据
  • JWT入门,jwt可以解密吗?
  • 36.利用解fgoalattain 有约束多元变量多目标规划问题求解(matlab程序)
  • EPPlus 读取和生成Excel
  • Java wait() notify() join()用法讲解
  • 新手注意事项-visual studio 来实现别踩白块儿
  • 【力扣】2810. 故障键盘 <模拟>
  • Docker desktop使用配置
  • 第一百二十一天学习记录:线性代数:矩阵乘法运算(宋浩板书)
  • 模拟实现消息队列项目(系列3) -- 服务器模块(硬盘管理)
  • 【iOS】锁
  • 杰发科技(合肥)2021笔试题
  • Java堆排序