当前位置: 首页 > news >正文

Elasticsearch 使用scroll滚动技术实现大数据量搜索、深度分页问题 和 search

基于scroll滚动技术实现大数据量搜索

如果一次性要查出来比如10万条数据,那么性能会很差,此时一般会采取用scroll滚动查询,一批一批的查,直到所有数据都查询完为止。

  1. scroll搜索会在第一次搜索的时候,保存一个当时的视图快照,之后只会基于该旧的视图快照提供数据搜索,如果这个期间数据变更,是不会让用户看到的

  2. 采用基于_doc(不使用_score)进行排序的方式,性能较高

  3. 每次发送scroll请求,我们还需要指定一个scroll参数,指定一个时间窗口,每次搜索请求只要在这个事件窗口内能完成就可以了

    # sort默认是相关度排序("sort":[{"FIELD":{"order":"desc"}}]),不按_score排序,按_doc排序
    # size设置的是这批查三条
    # 第一次查询会生成快照
    GET /lib3/user/_search?scroll=1m #这一批查询在一分钟内完成
    {"query":{"match":{}},"sort":[  "_doc"],"size":3 
    }# 第二次查询通过第一次的快照ID来查询,后面以此类推
    GET /_search/scroll
    {"scroll":"1m","scroll_id":"DnF1ZXJ5VGhIbkXIdGNoAwAAAAAAAAAdFkEwRENOVTdnUUJPWVZUd1p2WE5hV2cAAAAAAAAAHhZBMERDTIU3Z1FCT1|WVHdadIhOYVdnAAAAAAAAAB8WQTBEQ05VN2dRQk9ZVIR3WnZYTmFXZw=="
    }
    

基于 scroll 解决深度分页问题

原理上是对某次查询生成一个游标 scroll_id , 后续的查询只需要根据这个游标去取数据,直到结果集中返回的 hits 字段为空,就表示遍历结束。

注意:scroll_id 的生成可以理解为建立了一个临时的历史快照,在此之后的增删改查等操作不会影响到这个快照的结果。

使用 curl 进行分页读取过程如下:

  1. 先获取第一个 scroll_id,url 参数包括 /index/_type/ 和 scroll,scroll 字段指定了scroll_id 的有效生存期,以分钟为单位,过期之后会被es 自动清理。如果文档不需要特定排序,可以指定按照文档创建的时间返回会使迭代更高效。

    GET /product/info/_search?scroll=2m
    {"query":{"match_all":{}},"sort":["_doc"]
    }# 返回结果
    {"_scroll_id": "DnF1ZXJ5VGhIbkXIdGNoAwAAAAAAAAAdFkEwRENOVTdnUUJPWVZUd1p2WE5hV2cAAAAAAAAAHhZBMERDTIU3Z1FCT1|WVHdadIhOYVdnAAAAAAAAAB8WQTBEQ05VN2dRQk9ZVIR3WnZYTmFXZw==","took": 1,"timed_out": false,"_shards": {"total": 1,"successful": 1,"failed": 0},"hits":{...}
    }
    
  2. 后续的文档读取上一次查询返回的scroll_id 来不断的取下一页,如果srcoll_id 的生存期很长,那么每次返回的 scroll_id 都是一样的,直到该 scroll_id 过期,才会返回一个新的 scroll_id。请求指定的 scroll_id 时就不需要 /index/_type 等信息了。每读取一页都会重新设置 scroll_id 的生存时间,所以这个时间只需要满足读取当前页就可以,不需要满足读取所有的数据的时间,1 分钟足以。

    GET /product/info/_search?scroll=DnF1ZXJ5VGhIbkXIdGNoAwAAAAAAAAAdFkEwRENOVTdnUUJPWVZUd1p2WE5hV2cAAAAAAAAAHhZBMERDTIU3Z1FCT1|WVHdadIhOYVdnAAAAAAAAAB8WQTBEQ05VN2dRQk9ZVIR3WnZYTmFXZw==
    {"query":{"match_all":{}},"sort":["_doc"]
    }# 返回结果
    {"_scroll_id": "DnF1ZXJ5VGhIbkXIdGNoAwAAAAAAAAAdFkEwRENOVTdnUUJPWVZUd1p2WE5hV2cAAAAAAAAAHhZBMERDTIU3Z1FCT1|WVHdadIhOYVdnAAAAAAAAAB8WQTBEQ05VN2dRQk9ZVIR3WnZYTmFXZw==","took": 106,"_shards": {"total": 1,"successful": 1,"failed": 0},"hits": {"total": 22424,"max_score": 1.0,"hits": [{"_index": "product","_type": "info","_id": "did-519392_pdid-2010","_score": 1.0,"_routing": "519392","_source": {....}}]}
    }
    
  3. 所有文档获取完毕之后,需要手动清理掉 scroll_id 。虽然es 会有自动清理机制,但是 srcoll_id 的存在会耗费大量的资源来保存一份当前查询结果集映像,并且会占用文件描述符。所以用完之后要及时清理。使用 es 提供的 CLEAR_API 来删除指定的 scroll_id。

    # 删掉指定的多个 srcoll_id 
    DELETE /_search/scroll -d 
    {"scroll_id":["cXVlcnlBbmRGZXRjaDsxOzg3OTA4NDpTQzRmWWkwQ1Q1bUlwMjc0WmdIX2ZnOzA7"]
    }# 删除掉所有索引上的 scroll_id 
    DELETE /_search/scroll/_all# 查询当前所有的scroll 状态
    GET /_nodes/stats/indices/_search?pretty# 返回结果
    {"cluster_name" : "200.200.107.232","nodes" : {"SC4fYi0CT5mIp274ZgH_fg" : {"timestamp" : 1514346295736,"name" : "200.200.107.232","transport_address" : "200.200.107.232:9300","host" : "200.200.107.232","ip" : [ "200.200.107.232:9300", "NONE" ],"indices" : {"search" : {"open_contexts" : 0,"query_total" : 975758,"query_time_in_millis" : 329850,"query_current" : 0,"fetch_total" : 217069,"fetch_time_in_millis" : 84699,"fetch_current" : 0,"scroll_total" : 5348,"scroll_time_in_millis" : 92712468,"scroll_current" : 0}}}}
    }

基于 search_after 实现深度分页

search_after 是 ES5.0 及之后版本提供的新特性,search_after 有点类似 scroll,但是和 scroll 又不一样,它提供一个活动的游标,通过上一次查询最后一条数据来进行下一次查询。
search_after 分页的方式和 scroll 有一些显著的区别,首先它是根据上一页的最后一条数据来确定下一页的位置,同时在分页请求的过程中,如果有索引数据的增删改查,这些变更也会实时的反映到游标上。

  • 第一页的请求和正常的请求一样。

    GET /order/info/_search
    {"size": 10,"query": {"match_all" : {}},"sort": [{"date": "asc"}]
    }# 返回结果
    {"_index": "zmrecall","_type": "recall","_id": "60310505115909","_score": null,"_source": {..."date": 1545037514},"sort": [1545037514]}
    
  • 第二页的请求,使用第一页返回结果的最后一个数据的值,加上 search_after 字段来取下一页。注意:使用 search_after 的时候要将 from 置为 0 或 -1。

    curl -XGET 127.0.0.1:9200/order/info/_search
    {"size": 10,"query": {"match_all" : {}},"search_after": [1463538857], # 这个值与上次查询最后一条数据的sort值一致,支持多个"sort": [{"date": "asc"}]
    }
    

注意

  • 如果 search_after 中的关键字为654,那么654323的文档也会被搜索到,所以在选择 search_after 的排序字段时需要谨慎,可以使用比如文档的id或者时间戳等。
  • search_after 适用于深度分页+ 排序,因为每一页的数据依赖于上一页最后一条数据,所以无法跳页请求
  • 返回的始终是最新的数据,在分页过程中数据的位置可能会有变更。这种分页方式更加符合 moa 的业务场景。

http://www.lryc.cn/news/113174.html

相关文章:

  • 了解Swarm 集群管理
  • 【Docker】Docker私有仓库的使用
  • 基于arcFace+faiss开发构建人脸识别系统
  • C#设计模式(15)命令模式(Command Pattern)
  • 快速排序和qsort函数详解详解qsort函数
  • 搭建 elasticsearch8.8.2 伪集群 windows
  • C++ 运算符重载为成员函数
  • 51单片机程序烧录教程
  • Linux C++ 链接数据库并对数据库进行一些简单的操作
  • Linux进程间通信--msgsnd函数的作用
  • P1629 邮递员送信(最短路)(内附封面)
  • 网络安全--原型链污染
  • Harbor企业镜像仓库部署
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十一):分类问题-softmax回归
  • 【排序算法略解】(十种排序的稳定性,时间复杂度以及实现思想)(含代码)(完工于2023.8.3)
  • 学编程实用网站
  • Camunda 7.x 系列【5】 员工请假流程模型
  • 【C++从0到王者】第十七站:手把手教你写一个stack和queue及deque的底层原理
  • ffmpeg.c源码与函数关系分析
  • GD32F103待机模式与唤醒
  • 【Linux初阶】基础IO - 动静态库 | 初识、生成、链接、加载
  • 为Git仓库设置签名信息
  • iOS开发Swift开发UI页面链式调用库推荐
  • ClickHouse SQL与引擎--基本使用(一)
  • 2023-08-07力扣今日七题-好题
  • 支持多用户协同的思维导图TeamMapper
  • 【Vue】Parsing error: No Babel config file detected for ... vue
  • 2023-08-07力扣今日五题
  • ETHERCAT转PROFIBUS连接到300plc的配置方法
  • Spring Boot配置文件与日志文件