当前位置: 首页 > news >正文

MemFire教程|FastAPI+MemFire Cloud+LangChain开发ChatGPT应用-Part2

基本介绍

上篇文章我们讲解了使用FastAPI+MemFire Cloud+LangChain进行GPT知识库开发的基本原理和关键路径的代码实现。目前完整的实现代码已经上传到了github,感兴趣的可以自己玩一下:

https://github.com/MemFire-Cloud/memfirecloud-qa

目前代码主要完成了如下一些基本功能:

  • 使用FastAPI作为Web服务端框架完成了基本的Web服务端开发
  • 使用MemFire Cloud作为向量数据和个人文档数据存储
  • 使用LangChain进行AI应用开发,加载本地磁盘目录上的文档,计算embedding、存储到向量数据库
  • 使用OpenAI的GPT模型,完成问答功能的实现
  • 使用Next.js开发了一个简单的UI界面用于问答演示

本篇文章我们将介绍一下如何部署示例代码。

准备工作

  • 在MemFire Cloud上创建应用,后面需要用到应用的API URL和Service Role Key。可以在应用的应用设置->API页面找到相应的配置

在这里插入图片描述

  • 创建应用后,在应用的SQL执行器页面执行如下脚本
-- Enable the pgvector extension to work with embedding vectors
create extension vector;-- Create a table to store your documents
create table documents (id uuid primary key,content text, -- corresponds to Document.pageContentmetadata jsonb, -- corresponds to Document.metadataembedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed
);CREATE FUNCTION match_documents(query_embedding vector(1536), match_count int)RETURNS TABLE(id uuid,content text,metadata jsonb,-- we return matched vectors to enable maximal marginal relevance searchesembedding vector(1536),similarity float)LANGUAGE plpgsqlAS $$# variable_conflict use_column
BEGINRETURN querySELECTid,content,metadata,embedding,1 -(documents.embedding <=> query_embedding) AS similarityFROMdocumentsORDER BYdocuments.embedding <=> query_embeddingLIMIT match_count;
END;
$$;
  • 准备好用来测试的文档目录
    默认需要将文档放到app/docs下,可以通过环境变量指定其他目录

  • 准备好openai的账号
    请参考网上教程申请一个openai账号,后面代码运行需要用到openai的API KEY

如何运行

linux 下运行

1.安装依赖

pip install -r app/requirements.txt

2.设置参数
SUPABASE_URL/SUPABASE_KEY分别对应应用URL和service_role密钥。注意service_role秘钥具有比较高的数据库操作权限,只能用于服务端配置,不要泄漏。

export DOCS_PATH=./docs
export SUPABASE_URL="your-api-url"
export SUPABASE_KEY="your-service-role-key"
export OPENAI_API_KEY="your-openai-api-key"

3.运行

uvicorn main:app --reload --host 0.0.0.0

docker运行

docker build -t memfirecloud-qa:v1 .
docker run -p 8000:80 \-e SUPABASE_URL="your-api-url" \-e SUPABASE_KEY="your-service-role-key" \-e OPENAI_API_KEY="your-openai-api-key" \-v ./docs:/docs \memfirecloud-qa:v1

windows下运行(没测试)

与linux类似,设置相关环境变量,然后运行:

uvicorn main:app --reload --host 0.0.0.0

如何访问

用浏览器访问: http://your-ip:8000/可以显示一个简单的问答页面

支持的参数配置

# 本地文档路径
export DOCS_PATH=./docs# memfire cloud 应用的API URL和Service role key
export SUPABASE_URL="your-api-url"
export SUPABASE_KEY="your-service-role-key"# 使用openai / baidu 的大模型
export QA_BACKEND="openai" # 默认值# openai 相关配置(QA_BACKEND=openai是需要)
export OPENAI_ORGANIZATION="your-openai-organization"
export OPENAI_API_KEY="your-openai-api-key"
export OPENAI_MODEL="gpt-3.5-turbo"  # 默认值# 百度相关配置(QA_BACKEND=baidu时需要)
export BAIDU_API_KEY="your-baidu-api-key"
export BAIDU_API_SECRET="your-baidu-api-secret"
export BAIDU_MODEL="ERNIE-Bot-turbo" # 默认值

接下来可以做的事情

  • 过滤掉重复文档,避免应用重启或者添加重复文档时重新计算embedding

  • 程序运行中支持增量添加新文档,实时更新知识库

  • 支持对话(chat),目前只是问答(QA),不能连续对话

  • 支持百度文心一言的接口(已完成api的封装)

感兴趣的可以提交pr,一起完善功能。

http://www.lryc.cn/news/112559.html

相关文章:

  • C# File.Exists与Directory.Exists用法
  • (深度学习,自监督、半监督、无监督!!!)神经网络修改网络结构如何下手???
  • Codejock Task Panel ActiveX Crack
  • LeetCode 热题 100 JavaScript--141. 环形链表
  • 文字转语音
  • 让ELK在同一个docker网络下通过名字直接访问
  • EventBus 开源库学习(一)
  • 车载以太网SOME/IP的个人总结
  • vue2.29-Vue3跟vue2的区别
  • 【深度学习】分类和分割常见损失函数
  • Redhat Linux 安装MySQL安装手册
  • 题目:2303.计算应缴税款总额
  • Kotlin 1.9.0 发布:带来多项新特性,改进 Multiplatform/Native 支持
  • 接口测试——认知(一)
  • 剑指 Offer 10- I. 斐波那契数列
  • 洪水填充算法详解
  • ubuntu18.04安装docker及docker基本命令的使用
  • DataWhale 机器学习夏令营第二期——AI量化模型预测挑战赛 学习记录
  • 简单认识ELK日志分析系统
  • 【算法笔记】深度优先遍历-解决排列组合问题-
  • 【雕爷学编程】Arduino动手做(184)---快餐盒盖,极低成本搭建机器人实验平台2
  • 应急响应-勒索病毒的处理思路
  • ChatGPT是否能够处理多模态数据和多模态对话?
  • AcWing1171. 距离(lcatarjan)
  • JVM-运行时数据区
  • RedisTemplate中boundHashOps的使用
  • 计算机网络-性能指标
  • 排序第一课【插入排序】直接插入排序 与 希尔排序
  • 云计算——ACA学习 云计算概述
  • 如何为网站进行全面的整站翻译?