当前位置: 首页 > news >正文

vue diff 双端比较算法

文章目录

  • 双端指针
  • 比较策略
    • 命中策略四
    • 命中策略二
    • 命中策略三
    • 命中策略一
    • 未命中四种策略,遍历旧节点列表
    • 新增情况一
    • 新增情况二
  • 删除节点
  • 双端比较的优势

双端指针

在这里插入图片描述

  • 使用四个变量 oldStartIdx、oldEndIdx、newStartIdx 以及 newEndIdx 分别存储旧 children 和新 children 的两个端点的位置索引
let oldStartIdx = 0
let oldEndIdx = prevChildren.length - 1
let newStartIdx = 0
let newEndIdx = nextChildren.length - 1
  • 除了位置索引之外,还需要拿到四个位置索引所指向的 VNode
let oldStartVNode = prevChildren[oldStartIdx]
let oldEndVNode = prevChildren[oldEndIdx]
let newStartVNode = nextChildren[newStartIdx]
let newEndVNode = nextChildren[newEndIdx]

比较策略

  • 使用旧 children 的头一个 VNode 与新 children 的头一个 VNode 比对,即 oldStartVNode 和 newStartVNode 比较对。
  • 使用旧 children 的最后一个 VNode 与新 children 的最后一个 VNode 比对,即 oldEndVNode 和 newEndVNode 比对。
  • 使用旧 children 的头一个 VNode 与新 children 的最后一个 VNode 比对,即 oldStartVNode 和 newEndVNode 比对。
  • 使用旧 children 的最后一个 VNode 与新 children 的头一个 VNode 比对,即 oldEndVNode 和 newStartVNode 比对。
    在这里插入图片描述
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比对} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比对} else if (oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比对} else if (oldEndVNode.key === newStartVNode.key) {// 步骤四:oldEndVNode 和 newStartVNode 比对}
}

命中策略四

  • 第一步:拿旧 children 中的 li-a 和新 children 中的 li-d 进行比对,由于二者 key 值不同,所以不可复用,什么都不做。
  • 第二步:拿旧 children 中的 li-d 和新 children 中的 li-c 进行比对,同样不可复用,什么都不做。
  • 第三步:拿旧 children 中的 li-a 和新 children 中的 li-c 进行比对,什么都不做。
  • 第四步:拿旧 children 中的 li-d 和新 children 中的 li-d 进行比对,由于这两个节点拥有相同的 key 值,所以我们在这次比对的过程中找到了可复用的节点。
    • li-d 节点所对应的真实 DOM 原本是最后一个子节点,并且更新之后它应该变成第一个子节点。所以我们需要把 li-d 所对应的真实 DOM 移动到最前方即可:
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比对} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比对} else if (oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比对} else if (oldEndVNode.key === newStartVNode.key) {// 步骤四:oldEndVNode 和 newStartVNode 比对// 先调用 patch 函数完成更新patch(oldEndVNode, newStartVNode, container)// 更新完成后,将容器中最后一个子节点移动到最前面,使其成为第一个子节点container.insertBefore(oldEndVNode.el, oldStartVNode.el)// 更新索引,指向下一个位置oldEndVNode = prevChildren[--oldEndIdx]newStartVNode = nextChildren[++newStartIdx]}
}

命中策略二

  • 上一步更新完成之后,新的索引关系可以用下图来表示:
    在这里插入图片描述
  • 第一步:拿旧 children 中的 li-a 和新 children 中的 li-b 进行比对,由于二者 key 值不同,所以不可复用,什么都不做。
  • 第二步:拿旧 children 中的 li-c 和新 children 中的 li-c 进行比对,此时,由于二者拥有相同的 key,所以是可复用的节点,但是由于二者在新旧 children 中都是最末尾的一个节点,所以是不需要进行移动操作的,只需要调用 patch 函数更新即可,同时将相应的索引前移一位
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比对} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比对// 调用 patch 函数更新patch(oldEndVNode, newEndVNode, container)// 更新索引,指向下一个位置oldEndVNode = prevChildren[--oldEndIdx]newEndVNode = nextChildren[--newEndIdx]} else if (oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比对} else if (oldEndVNode.key === newStartVNode.key) {// 步骤四:oldEndVNode 和 newStartVNode 比对// 先调用 patch 函数完成更新patch(oldEndVNode, newStartVNode, container)// 更新完成后,将容器中最后一个子节点移动到最前面,使其成为第一个子节点container.insertBefore(oldEndVNode.el, oldStartVNode.el)// 更新索引,指向下一个位置oldEndVNode = prevChildren[--oldEndIdx]newStartVNode = nextChildren[++newStartIdx]}
}

命中策略三

  • 上一步更新完成之后,新的索引关系可以用下图来表示:
    在这里插入图片描述
  • 第一步:拿旧 children 中的 li-a 和新 children 中的 li-b 进行比对,由于二者 key 值不同,所以不可复用,什么都不做。
  • 第二步:拿旧 children 中的 li-b 和新 children 中的 li-a 进行比对,不可复用,什么都不做。
  • 第三步:拿旧 children 中的 li-a 和新 children 中的 li-a 进行比对,此时,我们找到了可复用的节点。
    • 这一次满足的条件是:oldStartVNode.key === newEndVNode.key,这说明:li-a 节点所对应的真实 DOM 原本是第一个子节点,但现在变成了“最后”一个子节点,这里的“最后”并不是指真正意义上的最后一个节点,而是指当前索引范围内的最后一个节点。所以移动操作也是比较明显的,我们将 oldStartVNode 对应的真实 DOM 移动到 oldEndVNode 所对应真实 DOM 的后面即可
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比对} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比对// 调用 patch 函数更新patch(oldEndVNode, newEndVNode, container)// 更新索引,指向下一个位置oldEndVNode = prevChildren[--oldEndIdx]newEndVNode = newEndVNode[--newEndIdx]} else if (oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比对// 调用 patch 函数更新patch(oldStartVNode, newEndVNode, container)// 将 oldStartVNode.el 移动到 oldEndVNode.el 的后面,也就是 oldEndVNode.el.nextSibling 的前面container.insertBefore(oldStartVNode.el,oldEndVNode.el.nextSibling)// 更新索引,指向下一个位置oldStartVNode = prevChildren[++oldStartIdx]newEndVNode = nextChildren[--newEndIdx]} else if (oldEndVNode.key === newStartVNode.key) {// 步骤四:oldEndVNode 和 newStartVNode 比对// 先调用 patch 函数完成更新patch(oldEndVNode, newStartVNode, container)// 更新完成后,将容器中最后一个子节点移动到最前面,使其成为第一个子节点container.insertBefore(oldEndVNode.el, oldStartVNode.el)// 更新索引,指向下一个位置oldEndVNode = prevChildren[--oldEndIdx]newStartVNode = nextChildren[++newStartIdx]}
}

命中策略一

  • 上一步更新完成之后,新的索引关系可以用下图来表示:
    在这里插入图片描述
  • 第一步:拿旧 children 中的 li-b 和新 children 中的 li-b 进行比对,二者拥有相同的 key,可复用
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比对// 调用 patch 函数更新patch(oldStartVNode, newStartVNode, container)// 更新索引,指向下一个位置oldStartVNode = prevChildren[++oldStartIdx]newStartVNode = nextChildren[++newStartIdx]} else if (oldEndVNode.key === newEndVNode.key) {// 省略...} else if (oldStartVNode.key === newEndVNode.key) {// 省略...} else if (oldEndVNode.key === newStartVNode.key) {// 省略...}
}

未命中四种策略,遍历旧节点列表

在这里插入图片描述

  • 上图中 ①、②、③、④ 这四步中的每一步比对,都无法找到可复用的节点
  • 策略为:拿新 children 中的第一个节点尝试去旧 children 中寻找,试图找到拥有相同 key 值的节点
  • 如果在旧的 children 中找到了与新 children 中第一个节点拥有相同 key 值的节点,这意味着:旧 children 中的这个节点所对应的真实 DOM 在新 children 的顺序中,已经变成了第一个节点。所以我们需要把该节点所对应的真实 DOM 移动到最前头
    在这里插入图片描述
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 省略...} else if (oldEndVNode.key === newEndVNode.key) {// 省略...} else if (oldStartVNode.key === newEndVNode.key) {// 省略...} else if (oldEndVNode.key === newStartVNode.key) {// 省略...} else {// 遍历旧 children,试图寻找与 newStartVNode 拥有相同 key 值的元素const idxInOld = prevChildren.findIndex(node => node.key === newStartVNode.key)if (idxInOld >= 0) {// vnodeToMove 就是在旧 children 中找到的节点,该节点所对应的真实 DOM 应该被移动到最前面const vnodeToMove = prevChildren[idxInOld]// 调用 patch 函数完成更新patch(vnodeToMove, newStartVNode, container)// 把 vnodeToMove.el 移动到最前面,即 oldStartVNode.el 的前面container.insertBefore(vnodeToMove.el, oldStartVNode.el)// 由于旧 children 中该位置的节点所对应的真实 DOM 已经被移动,所以将其设置为 undefinedprevChildren[idxInOld] = undefined}// 将 newStartIdx 下移一位newStartVNode = nextChildren[++newStartIdx]}
}
  • 因为旧节点已经找到并处理过了,所以后续的双端比较需要跳过处理过的节点
  • 将旧 children 中的 li-b 节点变成 undefined,然后旧节点指针遇到时跳过
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {// undefined 跳过if (!oldStartVNode) {oldStartVNode = prevChildren[++oldStartIdx]} else if (!oldEndVNode) { // undefined 跳过oldEndVNode = prevChildren[--oldEndIdx]} else if (oldStartVNode.key === newStartVNode.key) {// 省略...} else if (oldEndVNode.key === newEndVNode.key) {// 省略...} else if (oldStartVNode.key === newEndVNode.key) {// 省略...} else if (oldEndVNode.key === newStartVNode.key) {// 省略...} else {const idxInOld = prevChildren.findIndex(node => node.key === newStartVNode.key)if (idxInOld >= 0) {const vnodeToMove = prevChildren[idxInOld]patch(vnodeToMove, newStartVNode, container)prevChildren[idxInOld] = undefinedcontainer.insertBefore(vnodeToMove.el, oldStartVNode.el)}newStartVNode = nextChildren[++newStartIdx]}
}

新增情况一

  • 节点所在的双端不满足四种策略,也不满足能找到旧节点

在这里插入图片描述

  • 在新 children 中,节点 li-d 是一个全新的节点。在这个例子中 ①、②、③、④ 这四步的比对仍然无法找到可复用节点,所以我们会尝试拿着新 children 中的 li-d 节点去旧的 children 寻找与之拥有相同 key 值的节点,结果很显然,我们无法找到这样的节点。这时说明该节点是一个全新的节点,我们应该将其挂载到容器中,由于 li-d 节点的位置索引是 newStartIdx,这说明 li-d 节点是当前这一轮比较中的“第一个”节点,所以只要把它挂载到位于 oldStartIdx 位置的节点所对应的真实 DOM 前面就可以了,即 oldStartVNode.el
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (!oldStartVNode) {oldStartVNode = prevChildren[++oldStartIdx]} else if (!oldEndVNode) {oldEndVNode = prevChildren[--oldEndIdx]} else if (oldStartVNode.key === newStartVNode.key) {// 省略...} else if (oldEndVNode.key === newEndVNode.key) {// 省略...} else if (oldStartVNode.key === newEndVNode.key) {// 省略...} else if (oldEndVNode.key === newStartVNode.key) {// 省略...} else {const idxInOld = prevChildren.findIndex(node => node.key === newStartVNode.key)if (idxInOld >= 0) {const vnodeToMove = prevChildren[idxInOld]patch(vnodeToMove, newStartVNode, container)prevChildren[idxInOld] = undefinedcontainer.insertBefore(vnodeToMove.el, oldStartVNode.el)} else {// 使用 mount 函数挂载新节点,如果传入了最后一个参数,内部也是使用 insertBeforemount(newStartVNode, container, false, oldStartVNode.el)}newStartVNode = nextChildren[++newStartIdx]}
}

新增情况二

  • 节点所在的双端优先满足了四种策略

在这里插入图片描述

  • 最终双端比较完成后结果
    在这里插入图片描述
  • oldEndIdx 将比 oldStartIdx 的值要小,对 oldEndIdx 和 oldStartIdx 的值进行检查,如果在循环结束之后 oldEndIdx 的值小于 oldStartIdx 的值则说明新的 children 中存在还没有被处理的全新节点,这时我们应该调用 mount 函数将其挂载到容器元素中,观察上图可知,我们只需要把这些全新的节点添加到 oldStartIdx 索引所指向的节点之前即可
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {// 省略...
}
if (oldEndIdx < oldStartIdx) {// 添加新节点for (let i = newStartIdx; i <= newEndIdx; i++) {mount(nextChildren[i], container, false, oldStartVNode.el)}
}

删除节点

在这里插入图片描述

  • 在进行双端比较后
    在这里插入图片描述
  • 此时 newEndIdx 的值小于 newStartIdx 的值,所以循环将终止,但是通过上图可以发现,旧 children 中的 li-b 节点没有得到被处理的机会,我们应该将其移除才行,循环结束后,一旦满足条件 newEndIdx < newStartId 则说明有元素需要被移除
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {// 省略...
}
if (oldEndIdx < oldStartIdx) {// 添加新节点for (let i = newStartIdx; i <= newEndIdx; i++) {mount(nextChildren[i], container, false, oldStartVNode.el)}
} else if (newEndIdx < newStartIdx) {// 移除操作for (let i = oldStartIdx; i <= oldEndIdx; i++) {container.removeChild(prevChildren[i].el)}
}

双端比较的优势

  • 对于如下节点情况

在这里插入图片描述

  • 如果采用 React 根据相对位置的diff 方式来对上例进行更新,则会执行两次移动操作
    • 首先会把 li-a 节点对应的真实 DOM 移动到 li-c 节点对应的真实 DOM 的后面
    • 接着再把 li-b 节点所对应的真实 DOM 移动到 li-a 节点所对应真实 DOM 的后面,即:
      在这里插入图片描述
  • 如果采用 vue 的双端比较 diff
    • 第一步:拿旧 children 中的 li-a 和新 children 中的 li-c 进行比对,由于二者 key 值不同,所以不可复用,什么都不做。
    • 第二步:拿旧 children 中的 li-c 和新 children 中的 li-b 进行比对,不可复用,什么都不做。
    • 第三步:拿旧 children 中的 li-a 和新 children 中的 li-b 进行比对,不可复用,什么都不做。
    • 第四步:拿旧 children 中的 li-c 和新 children 中的 li-c 进行比对,此时,两个节点拥有相同的 key 值,可复用。

在这里插入图片描述

  • 可以看到,我们只通过一次 DOM 移动,就使得真实 DOM 的顺序与新 children 中节点的顺序一致,后序只需要 patch 不需要移动。双端比较更加符合人类思维,在移动 DOM 方面更具有普适性,能减少因为 DOM 结构的差异而产生的影响
http://www.lryc.cn/news/110938.html

相关文章:

  • 初识React: 基础(概念 特点 高效原因 虚拟DOM JSX语法 组件)
  • 自监督去噪:Neighbor2Neighbor原理分析与总结
  • 简单工厂模式(Simple Factory)
  • Agent:OpenAI的下一步,亚马逊云科技站在第5层
  • JMeter 4.x 简单使用
  • 深入NLTK:Python自然语言处理库高级教程
  • React 用来解析html 标签的方法
  • 【C++】做一个飞机空战小游戏(五)——getch()控制两个飞机图标移动(控制光标位置)
  • Flask 是什么?Flask框架详解及实践指南
  • C. Mark and His Unfinished Essay - 思维
  • Java的变量与常量
  • C# Blazor 学习笔记(6):热重置问题解决
  • 一百四十六、Xmanager——Xmanager5连接Xshell7并控制服务器桌面
  • 用Rust实现23种设计模式之 模板方法模式
  • python与深度学习(十三):CNN和IKUN模型
  • 题目:2283.判断一个数的数字计数是否等于数位的值
  • 任务14、无缝衔接,MidJourney瓷砖(Tile)参数制作精良贴图
  • 【uniapp APP如何优化】
  • uni-app——下拉框多选
  • 从excel中提取嵌入式图片的解决方法
  • python socket 网络编程的基本功
  • 【element-ui】form表单初始化页面如何取消自动校验rules
  • git 公钥密钥 生成与查看
  • 数据标注对新零售的意义及人工智能在新零售领域的应用?
  • 命令模式-请求发送者与接收者解耦
  • 【雕爷学编程】Arduino动手做(186)---WeMos ESP32开发板
  • 3、JSON数据的处理
  • 8月5日上课内容 nginx的优化和防盗链
  • 网络爬虫请求头中的Referer和User-Agent与代理IP的配合使用
  • RabbitMQ 生产者-消息丢失 之 场景分析