当前位置: 首页 > news >正文

LeetCode404. 左叶子之和

404. 左叶子之和

文章目录

      • [404. 左叶子之和](https://leetcode.cn/problems/sum-of-left-leaves/)
        • 一、题目
        • 二、题解
          • 方法一:递归
          • 方法二:迭代


一、题目

给定二叉树的根节点 root ,返回所有左叶子之和。

示例 1:

img

输入: root = [3,9,20,null,null,15,7] 
输出: 24 
解释: 在这个二叉树中,有两个左叶子,分别是 9 和 15,所以返回 24

示例 2:

输入: root = [1]
输出: 0

提示:

  • 节点数在 [1, 1000] 范围内
  • -1000 <= Node.val <= 1000

二、题解

方法一:递归

算法思路:

题目要求计算二叉树中所有左叶子节点的值之和。我们可以使用递归来解决这个问题。递归的思想是,对于每个节点,我们判断它是否是左叶子节点,如果是,则将其值加到结果中,然后递归地处理它的左子树和右子树。

具体实现:

  1. 我们首先定义一个变量 sum 来保存左叶子节点值的和,并初始化为0。

  2. 在递归函数 sumOfLeftLeaves 中,我们首先检查当前节点是否为空,如果为空,则返回0。

  3. 然后,我们检查当前节点的左子节点是否存在,以及左子节点是否为叶子节点。如果是叶子节点,则将其值加到 sum 中。

  4. 最后,我们递归地处理当前节点的左子树和右子树,将它们的返回值累加到 sum 中。

  5. 在每一层递归结束后,函数返回当前子树中左叶子节点的值之和。

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int sumOfLeftLeaves(TreeNode* root) {int sum = 0;if (root == nullptr) {return 0;}// 判断左子节点是否为叶子节点,如果是则将值加入 sumif (root->left && !root->left->left && !root->left->right) {sum += root->left->val;}// 递归处理左子树和右子树,并累加结果到 sumreturn sum + sumOfLeftLeaves(root->left) + sumOfLeftLeaves(root->right);}
};

算法分析:

  1. 时间复杂度:遍历整个二叉树的时间复杂度为 O(N),其中 N 是二叉树的节点数。在每个节点上,我们进行常数时间的判断和加法操作。

  2. 空间复杂度:递归函数的调用会占用栈空间,递归的深度最坏情况下为树的高度,所以空间复杂度为 O(H),其中 H 是二叉树的高度。在最坏情况下,二叉树可能退化为链表,高度为 N,此时空间复杂度为 O(N)。但在一般情况下,二叉树的高度平衡,空间复杂度会接近 O(logN)。

方法二:迭代

算法思路:

  1. 我们可以使用深度优先搜索(DFS)来遍历二叉树,使用栈来辅助遍历。
  2. 在遍历的过程中,对于每个节点,我们检查它的左子节点是否存在,如果存在,继续检查左子节点是否为叶子节点(即没有左右子节点)。如果是叶子节点,则将其值加到累加器 sum 中。
  3. 对于非叶子节点,我们将左子节点压入栈,以便后续继续检查。
  4. 然后,无论是否有右子节点,都将右子节点压入栈,以确保我们遍历了所有可能的路径。

具体实现:

class Solution {
public:int sumOfLeftLeaves(TreeNode* root) {stack<TreeNode*> st;int sum = 0;if (root == nullptr) {return 0;}st.push(root);while (!st.empty()) {TreeNode* node = st.top();st.pop();if (node->left) {if (!node->left->left && !node->left->right) {sum += node->left->val; // 如果左子节点是叶子节点,将值加入 sum} else {st.push(node->left); // 如果左子节点不是叶子节点,将左子节点压入栈}}if (node->right) {st.push(node->right); // 将右子节点压入栈,无论是否为叶子节点}}return sum;}
};

算法分析:

  • 时间复杂度:遍历整个二叉树的时间复杂度为 O(N),其中 N 是二叉树的节点数。在每个节点上,我们进行常数时间的判断、加法和栈操作。
  • 空间复杂度:使用了一个栈来辅助遍历,栈的空间占用与二叉树的高度相关,最坏情况下为 O(N)。因此,总体空间复杂度为 O(N)。
http://www.lryc.cn/news/107758.html

相关文章:

  • Nginx 高性能内存池 ----【学习笔记】
  • iOS--frame和bounds
  • docker logs 使用说明
  • Ceph入门到精通-Ceph PG状态详细介绍(全)
  • 【数据结构】二叉树、二叉搜索树、平衡二叉树、红黑树、B树、B+树
  • 【JVM】(二)深入理解Java类加载机制与双亲委派模型
  • npm i 报错项目启动不了解决方法
  • 【从零开始学习JAVA | 第三十七篇】初识多线程
  • 微信新功能,你都知道吗?
  • Android 中 app freezer 原理详解(二):S 版本
  • Vue3_04_ref 函数和 reactive 函数
  • 05 Ubuntu下安装.deb安装包方式安装vscode,snap安装Jetbrains产品等常用软件
  • 性能测试jmeter连接数据库jdbc(sql server举例)
  • 8.3 C高级 Shell脚本
  • 2023年华数杯A题
  • 【零基础学Rust | 基础系列 | 函数,语句和表达式】函数的定义,使用和特性
  • 加解密算法+压缩工具
  • FeignClient接口的几种方式总结
  • springBoot多数据源使用tdengine(3.0.7.1)+MySQL+mybatisPlus+druid连接池
  • 剑指Offer 05.替换空格
  • ChatGPT的功能与特点
  • Vue2.0基础
  • rust 如何定义[u8]数组?
  • 关于Hive的使用技巧
  • 【C++】BSTree 模拟笔记
  • 5分钟快手入门laravel邮件通知
  • iOS——Block two
  • Ubuntu出现内部错误解决办法
  • 2023年中职组“网络安全”赛项吉安市竞赛任务书
  • ELK日志分析系统介绍及搭建(超详细)