基于埋点日志数据的网络流量统计 - PV、UV
水善利万物而不争,处众人之所恶,故几于道💦
文章目录
一、 网站总流量数统计 - PV
1. 需求分析
2. 代码实现
方式一
方式二
方式三:使用process算子实现
方式四:使用process算子实现
二、网站独立访客数统计 - UV
1. 需求分析
2. 代码实现
一、 网站总流量数统计 - PV
PV全称 Page View,也就是一个网站的页面浏览量。每当用户进入网站加载或者刷新某个页面时,就会给该网站带来PV量,它往往用来衡量一个网站的流量和用户活跃度。当然了,单个指标并不能全面的反映网站的实际情况,往往需要结合其他的指标进行分析。
1. 需求分析
埋点采集到的数据格式大概是这个样子(文件已上传资源)第一个是userId、第二个是itemId、第三个是categoryId、第四个是behavior、第五个是timestamp
所以我们要统计PV的话要先从第四列中筛选出PV,然后再进行累加,求出最终的PV
2. 代码实现
方式一:
先用readTextFile()
读取文件,然后将读取到的每行数据封装成一个bean对象,再通过
filter
过滤出我们需要的PV数据,这时得到的都是封装好的一个个对象没法直接sum,所以通过
map
将数据映射为一个个的元组类型(PV,1)然后,使用
keyBy()
将他们分到同一个并行度中进行
sum
,得出最终的结果。
public class Flink01_Project_PV {public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(2);env.readTextFile("input/UserBehavior.csv")// 将数据封装成 UserBehavior 对象.map(new MapFunction<String, UserBehavior>() {@Overridepublic UserBehavior map(String line) throws Exception {String[] data = line.split(",");return new UserBehavior(Long.valueOf(data[0]),Long.valueOf(data[1]),Integer.valueOf(data[2]),data[3],Long.valueOf(data[4]));}})// 过滤出行为为PV的数据.filter(new FilterFunction<UserBehavior>() {@Overridepublic boolean filter(UserBehavior value) throws Exception {return "pv".equals(value.getBehavior());}})// 因为直接求和的话没法求,所以做一次映射,映射成 (PV,1) 这样的结构.map(new MapFunction<UserBehavior, Tuple2<String,Long>>() {@Overridepublic Tuple2<String, Long> map(UserBehavior value) throws Exception {return Tuple2.of(value.getBehavior(),1L);}})// 然后 将他们通过key进行分组,进入同一个并行度里面 进行求和.keyBy(new KeySelector<Tuple2<String, Long>, String>() {@Overridepublic String getKey(Tuple2<String, Long> value) throws Exception {return value.f0;}})// 进行求和.sum(1).print();try {env.execute();} catch (Exception e) {e.printStackTrace();}}
}
运行结果:
方式二:
这种方式省去了方式一的封装对象,其他的思路都一样。
public class Flink01_Project_PV {public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(2);env.readTextFile("input/UserBehavior.csv")// 直接过滤出我们想要的数据.filter(new FilterFunction<String>() {@Overridepublic boolean filter(String value) throws Exception {String[] data = value.split(",");return "pv".equals(data[3]);}})// 然后将结构转换为元组类型 (PV,1).map(new MapFunction<String, Tuple2<String,Long>>() {@Overridepublic Tuple2<String, Long> map(String value) throws Exception {String[] data = value.split(",");return Tuple2.of(data[3],1L);}})// 通过key分组.keyBy(new KeySelector<Tuple2<String, Long>, String>() {@Overridepublic String getKey(Tuple2<String, Long> value) throws Exception {return value.f0;}})// 求和.sum(1).print();try {env.execute();} catch (Exception e) {e.printStackTrace();}}
}
运行结果:
方式三:使用process算子实现
首先使用readTextFile
读取数据,使用map
将读取到的数据封装为对象,然后使用keyBy
进行分组,最后使用process
算子进行求解
- 为什么要使用keyBy():目的是让pv数据进入同一个并行度,如果不使用直接process的话,两个并行度里面都有一个sum,结果就不对了
- 为什么不使用filter过滤呢?因为我们的过滤逻辑是再process里面完成的,所以不用再额外过滤
public class Flink02_Project_PV_process {public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(2);env.readTextFile("input/UserBehavior.csv")// 封装成 UserBehavior 对象.map(new MapFunction<String, UserBehavior>() {@Overridepublic UserBehavior map(String line) throws Exception {String[] data = line.split(",");return new UserBehavior(Long.valueOf(data[0]),Long.valueOf(data[1]),Integer.valueOf(data[2]),data[3],Long.valueOf(data[4]));}})// 通过key分组.keyBy(new KeySelector<UserBehavior, String>() {@Overridepublic String getKey(UserBehavior value) throws Exception {return value.getBehavior();}})// 使用proces算子实现 PV 的统计.process(new ProcessFunction<UserBehavior, String>() {// 定义累加变量long sum =0L ;@Overridepublic void processElement(UserBehavior value, Context ctx, Collector<String> out) throws Exception {// 判断用户行为是否是PVif ("pv".equals(value.getBehavior())){// 条件满足 sum+1sum++;// 将结果收集out.collect("pv = "+sum);}}}).print();try {env.execute();} catch (Exception e) {e.printStackTrace();}}
}
运行结果:
方式四:使用process算子实现
方式四相比于方式三省去了对象的封装,其他思路一样。
public class Flink02_Project_PV_process {public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(2);env.readTextFile("input/UserBehavior.csv")// 通过key分组.keyBy(new KeySelector<String, String>() {@Overridepublic String getKey(String value) throws Exception {return value.split(",")[3];}})// 直接使用process求 PV.process(new ProcessFunction<String, String>() {// 定义累加变量long sum = 0L;@Overridepublic void processElement(String line, Context ctx, Collector<String> out) throws Exception {// 将过来的每行数据切割String[] datas = line.split(",");// 判断是否是我们想要的数据if("pv".equals(datas[3])){// 符合条件,将累加变量+1sum++;// 收集结果out.collect("pv = "+sum);}}}).print();try {env.execute();} catch (Exception e) {e.printStackTrace();}}
}
运行结果:
二、网站独立访客数统计 - UV
UV全称 Unique Visitor,也就是独立访客数。在PV中,我们统计的是所有用户对所有页面的浏览行为,也就是同一个用户的浏览行为会被重复统计。实际上我们关注的是在某一特定范围内(一天、一周或者一个月)内访问该网站的用户数,也就是每个访客只计算一次。它能从侧面反映出该网站的受欢迎程度和用户规模的大小。
1. 需求分析
要统计UV量的话,只需要对全量的PV,使用userId去重,然后就能得到独立访客数了。2. 代码实现
先filter
过滤出PV数据,然后通过keyBy
将PV分到同一组,然后使用process
进行处理,处理方法是:用set集合存放userId,如果下一个userId可以加入该集合说明是一个新的独立访客,则收集当前集合的大小,若加入失败,说明集合中已经存在该userId,也就是不是一个新的独立访客,也就不做处理了。
public class Flink03_Project_UV {public static void main(String[] args) {Configuration conf = new Configuration();conf.setInteger("rest.port",1000);StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(conf);env.setParallelism(2);env.readTextFile("input/UserBehavior.csv")// 过滤出 PV 数据.filter(new FilterFunction<String>() {@Overridepublic boolean filter(String value) throws Exception {return "pv".equals(value.split(",")[3]);}})// 将PV的数据分到同一个组里面.keyBy(new KeySelector<String, String>() {@Overridepublic String getKey(String value) throws Exception {return value.split(",")[3];}})// 对同一组里面的数据进行处理.process(new ProcessFunction<String, String>() {// 存放 userId 的容器,回自动对数据进行去重,最后直接拿它的大小就知道UV了Set<Long> userIdSet = new HashSet<>();@Overridepublic void processElement(String value, Context ctx, Collector<String> out) throws Exception {Long userId = Long.valueOf(value.split(",")[0]);// 向set中添加userId,判断是否添加成功if (userIdSet.add(userId)) {// 添加成功的话,说明是一个新的独立访客,收集到此时容器大小out.collect("UV = "+ userIdSet.size());}}}).print();try {env.execute();} catch (Exception e) {e.printStackTrace();}}
}
运行结果: