当前位置: 首页 > news >正文

[华为OD] 最小传输时延(dijkstra算法)

明天就要面试了我也太紧张了吧

但是终于找到了一个比较好理解的dijkstra的python解法,让我快点把它背下来!!!!

文章目录

  • 题目
  • dijkstra算法的python实现
  • python解答
    • dfs解法
    • dijkstra解法

题目

先把题目放出来

某通信网络中有N个网络结点,用1到N进行标识。网络通过一个有向无环图表示,其中题的边的值表示结点之间的消息传递时延。现给定相连节点之间的时延列表 times[i] = {u,v,w},其中u表示源节点,v表示目的节点,w表示u和v之间的消息传递时延。
请计算给定源结点到目的结点的最小传输时延,如果目的结点不可达,返回-1。

输入描述:
输入的第一行为两个正整数,分别表示网络结点的个数N以及时延列表长度M,用空格分隔。
接下来的M行为两个结点间的时延列表[u,v,w]
输入的最后一行为两个正整数,分别表示源结点和目的结点。

比如:

输入3 3
1 2 11
2 3 13
1 3 50
1 3
输出24

一个有向无环图,用dfs也很好做。这里我们重点看一下dijkstra怎么做。

dijkstra算法的python实现

最短路径算法Dijkstra,主要思想是贪心。每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。
更具体地来说:
假设我们现在在一个有权图中,图中有n个点,点与点相连的路径上都分配有权重,代表了两点之间的距离。现在有一个起始点i,终点j,如果求i到j的最短距离。

  1. 我们建立一个集合s,把起始点i放进去,然后在与i相邻的边中寻找与i距离最近的点,并把这个点放到集合中去。
  2. 然后第二次遍历与集合中的点相连的点,并更新到起始点的距离,并把距离起始点i最近的点放到集合中去。
  3. 继续上面的做法,每次都在集合中添加一个点。直到没有新的点可以添加进去。

我们来写一个比较简单的python实现。
假设现在有n个节点,同时有一个输入distance距离列表,里面的元素表示的是[u,v,w]即u到v的距离。现在给定起点k,求k到最远的点的最小距离

dist = [float('inf')]*n # 构建一个列表存放n个结点到目标k的距离
dist[k-1] = 0  # 第k个结点到他本身的距离为0g = [[float('inf')] * n for _ in range(n)] # 构建一个矩阵,表示n个结点彼此的距离。
for x, y, dis in distance:g[x-1][y-1] = time  # 按照distance列表更新矩阵中两两结点的距离。used = [False]*n # 判断点是否已经加入了set里面。for _ in range(n):x = -1for y, u in enumerate(used):if not u and (x == -1 or dist[y] < dist[x]): #只考虑没有使用过的节点,寻找结点们到初始点的最小距离。# 毫无疑问,在第一次遍历中,这个距离是0,目标点是我们的源点本身。x = y  # 如果距离小,就用新的点替换掉x。used[x] = True # 每次都使用距离源点最近的点for y, time in enumerate(g[x]):dist[y] = min(dist[y], dist[x]+time)  # 更新相连的结点到源点的距离ans = max(dist)  # 这就是我们要求的k到最远的点的最小距离

dijkstra的时间复杂度是 O ( N 2 ) O(N^2) O(N2).

这个题也可以用dfs的方法来作,遍历到父结点时,更新所有的子结点到源点的距离。dfs解该题的时间复杂度更高一点,是 O ( N N ) O(N^N) O(NN).
同样给出一个解法代码。

map_dict = defaultdict(list)
for u, v, w in distance:map_dict[u].append([v,w])  dist = [float('inf')] * n
def dfs(index, dis):if dis < dist[index-1]:dist[index-1] = disfor v, w in map_dict[index]:dfs(v,dis+w)
dfs(k,0)res = max(dist)

python解答

我们回到题目的python解答上。

dfs解法

首先我们给出一个dfs的解答。
可以看到这个解法和上面的dfs几乎一模一样,区别是这里返回的是源节点到目标点的距离。

def solution(times,src, dist):graph = {}for u,v, w in times:if u not in graph:graph[u] = []graph[u].append([v,w])root = [float('inf')]*N    def dfs(index, dis):if dis<root[index-1]:root[index-1] = disif index in graph:for u, v in graph[index]:dfs(u,dis+v)dfs(src,0)res = root[dist-1]return res if res!=float('inf') else -1

dijkstra解法

这个解法也是和上面的思路一样,只不过在发现x==dis-1的时候,提前break结束了这个循环。

def solution(times, src, dis):g = [[float('inf')]*N for _ in range(N)]for u,v, time in times:g[u-1][v-1] = timedist = [float('inf')]*Ndist[src-1] = 0used = [False]*Nfor i in range(N):x = -1for y, u in enumerate(used):if not u and (x==-1 or dist[y]< dist[x]):x = yif x == dis-1:breakused[x] = Truefor y, time in enumerate(g[x]):dist[y] = min(dist[y],dist[x]+time)return dist[dis-1]
http://www.lryc.cn/news/105156.html

相关文章:

  • 问道管理:总资产大于总市值好吗?
  • IBM Spectrum LSF (“LSF“ ,简称为负载共享设施) 用户案例
  • Pytorch深度学习-----神经网络之非线性激活的使用(ReLu、Sigmoid)
  • Gis入门,使用起止点和两个控制点生成三阶贝塞尔曲线(共四个控制点,线段转曲线)
  • Web-7-深入理解Cookie与Session:实现用户跟踪和数据存储
  • Springboot设置Https
  • Windows 使用 Linux 子系统,轻轻松松安装多个linux
  • 中级课程——弱口令(认证崩溃)
  • web自动化测试进阶篇05 ——— 界面交互场景测试
  • NICE-SLAM: Neural Implicit Scalable Encoding for SLAM论文阅读
  • cmake 配置Visual studio的调试命令
  • MPDIoU: A Loss for Efficient and Accurate Bounding BoxRegression--论文学习笔记
  • 【Uniapp 的APP热更新】
  • MySQL主从复制配置
  • Linux - 添加普通用户为信任用户
  • flask----路由系统
  • 驶向专业:嵌入式开发在自动驾驶中的学习之道
  • Go语言入门:从零开始的快速指南(一)
  • Windows7+内网, 安装高版本nodejs,使用vite+vue3+typescript开发项目
  • 【C语言day14】
  • 暑假刷题第19天--8/1
  • Java开发中的------修改密码+忘记密码
  • ffmpeg安装
  • Mac电脑目录
  • 一起学算法(栈篇)
  • Ubuntu开机自启服务systemd.service配置教程(Ubuntu服务)(Linux服务)upstart
  • 大数据课程E4——Flume的Channel
  • es6中的Map和Set数据结构
  • MyBatis 框架基本的增删改查
  • Javascript--JSON