当前位置: 首页 > news >正文

在OK3588板卡上部署模型实现人工智能OCR应用

一、主机模型转换

我们依旧采用FastDeploy来部署应用深度学习模型到OK3588板卡上

进入主机Ubuntu的虚拟环境
conda activate ok3588

安装rknn-toolkit2(该工具不能在OK3588板卡上完成模型转换)

git clone https://github.com/rockchip-linux/rknn-toolkit2
cd rknn-toolkit2
注意这里需要1.4的版本
git checkout v1.4.0 -f
cd packages
pip install rknn_toolkit2-1.4.0_22dcfef4-cp36-cp36m-linux_x86_64.whl

下载FastDeploy

git clone https://github.com/PaddlePaddle/FastDeploy
cd FastDeploy/examples/vision/ocr/PP-OCR

下载PP-OCRv3文字检测模型

wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar -xvf ch_PP-OCRv3_det_infer.tar

下载文字方向分类器模型

wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar

下载PP-OCRv3文字识别模型

wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar -xvf ch_PP-OCRv3_rec_infer.tar

安装模型转换工具

pip install paddle2onnx
pip install pyyaml

paddle2onnx --model_dir ch_PP-OCRv3_det_infer \--model_filename inference.pdmodel \--params_filename inference.pdiparams \--save_file ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \--enable_dev_version True
paddle2onnx --model_dir ch_ppocr_mobile_v2.0_cls_infer \--model_filename inference.pdmodel \--params_filename inference.pdiparams \--save_file ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \--enable_dev_version True
paddle2onnx --model_dir ch_PP-OCRv3_rec_infer \--model_filename inference.pdmodel \--params_filename inference.pdiparams \--save_file ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \--enable_dev_version True

固定模型的输入shape

python -m paddle2onnx.optimize --input_model ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \--output_model ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \--input_shape_dict "{'x':[1,3,960,960]}"
python -m paddle2onnx.optimize --input_model ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \--output_model ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \--input_shape_dict "{'x':[1,3,48,192]}"
python -m paddle2onnx.optimize --input_model ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \--output_model ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \--input_shape_dict "{'x':[1,3,48,320]}"

转换成RKNN模型

python rockchip/rknpu2_tools/export.py --config_path tools/rknpu2/config/ppocrv3_det.yaml \--target_platform rk3588
python rockchip/rknpu2_tools/export.py --config_path tools/rknpu2/config/ppocrv3_rec.yaml \--target_platform rk3588
python rockchip/rknpu2_tools/export.py --config_path tools/rknpu2/config/ppocrv3_cls.yaml \--target_platform rk3588

这时生成了三个可以部署在OK3588上的模型文件
ch_ppocr_mobile_v20_cls_infer_rk3588_unquantized.rknn
ch_PP-OCRv3_rec_infer_rk3588_unquantized.rknn
ch_PP-OCRv3_det_infer_rk3588_unquantized.rknn
把这三个文件传输到OK3588板卡上

二、板卡模型部署

进入虚拟环境
conda activate ok3588
cd FastDeploy/examples/vision/ocr/PP-OCR/rockchip/cpp
mkdir build
cd build
cmake … -DFASTDEPLOY_INSTALL_DIR=/home/forlinx/FastDeploy/build/fastdeploy-0.0.0/
make -j
得到了编译后的文件 infer_demo

三、执行推理

下载图片和字典文件

wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt

拷贝RKNN模型到build目录

三个模型文件
ch_ppocr_mobile_v20_cls_infer_rk3588_unquantized.rknn
ch_PP-OCRv3_rec_infer_rk3588_unquantized.rknn
ch_PP-OCRv3_det_infer_rk3588_unquantized.rknn
放在build文件夹里面

RKNPU推理

./infer_demo ./ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer_rk3588_unquantized.rknn \./ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v20_cls_infer_rk3588_unquantized.rknn \./ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer_rk3588_unquantized.rknn \./ppocr_keys_v1.txt \./12.jpg \1

推理结果展示

在这里插入图片描述

在这里插入图片描述

http://www.lryc.cn/news/103645.html

相关文章:

  • 在linux中怎样同时运行三个微服务保证退出时不会终止
  • MD-MTSP:成长优化算法GO求解多仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)
  • Python入门一
  • mysql_2.4——安装常见问题
  • 行业追踪,2023-07-31,板块多数都是指向消费
  • K8S故障排查
  • idea集成jrebel实现热部署
  • 【Git系列】Git配置SSH免密登录
  • Node.js 安装与版本管理(nvm 的使用)
  • SpringBoot项目中使用Lombok插件中Slf4j日志框架
  • VS下开发Qt应用环境搭建
  • Python实现GA遗传算法优化循环神经网络分类模型(LSTM分类算法)项目实战
  • Spring源码:Spring运行环境Environment
  • SpringBoot使用PropertiesLauncher加载外部jar包
  • 骑行 - 出发前如何准备
  • ssm员工管理系统
  • 《吐血整理》进阶系列教程-拿捏Fiddler抓包教程(16)-Fiddler如何充当第三者再识AutoResponder标签-上
  • Yolov8新版本解读:优化点如何加入新版本,通过加入EMA注意力进行对比说明
  • NoSQL———Redis配置与优化
  • js,瀑布流
  • “深入了解Spring Boot:从入门到精通“
  • 记录时间计算bug getDay()的一个坑
  • 【lesson5】linux vim介绍及使用
  • 【玩转Linux】Linux输入子系统简介
  • grid map学习笔记2之grid map的一些常规定义和功能包说明
  • Python-文件操作
  • windows中注册redis服务启动时报1067错误
  • 大数据面试题:HBase的RegionServer宕机以后怎么恢复的?
  • ansible的脚本——playbook剧本
  • 【系统监控程序】