当前位置: 首页 > article >正文

开源人脸识别项目 —— face_recognition

GitHub地址:https://github.com/ageitgey/face_recognition

本项目是世界上最简洁的人脸识别库,你可以使用Python和命令行工具提取、识别、操作人脸。

本项目的人脸识别是基于业内领先的C++开源库 dlib中的深度学习模型,用Labeled Faces in the Wild人脸数据集进行测试,有高达99.38%的准确率。但对小孩和亚洲人脸的识别准确率尚待提升。

Labeled Faces in the Wild是美国麻省大学安姆斯特分校(University of Massachusetts Amherst)制作的人脸数据集,该数据集包含了从网络收集的13,000多张面部图像。

本项目提供了简易的face_recognition命令行工具,你可以用它处理整个文件夹里的图片。

特性

从图片里找到人脸

定位图片中的所有人脸:

image

import face_recognition
image = face_recognition.load_image_file("your_file.jpg")
face_locations = face_recognition.face_locations(image)

识别人脸关键点

识别人脸关键点,包括眼睛、鼻子、嘴和下巴。

image

import face_recognition
image = face_recognition.load_image_file("your_file.jpg")
face_landmarks_list = face_recognition.face_landmarks(image)

识别人脸关键点在很多领域都有用处,但同样你也可以把这个功能玩坏,比如本项目的 digital make-up自动化妆案例(就像美图秀秀一样)。

image

识别图片中的人是谁

image

import face_recognition
known_image = face_recognition.load_image_file("biden.jpg")
unknown_image = face_recognition.load_image_file("unknown.jpg")biden_encoding = face_recognition.face_encodings(known_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]results = face_recognition.compare_faces([biden_encoding], unknown_encoding)

你也可以配合其它的Python库(比如opencv)实现实时人脸检测:

image

看这个案例 实时人脸检测 。

安装

环境配置

  • Python 3.3+ or Python 2.7
  • macOS or Linux
  • Windows并不是我们官方支持的,但也许也能用

不同操作系统的安装方法

在 Mac 或者 Linux上安装本项目

第一步,安装dlib和相关Python依赖:

  • 如何在macOS或者Ubuntu上安装dlib

然后,用pip命令从pypi社区上下载本项目的pyhon模块:

pip3命令下载的是python3对应的版本,pip命令下载的是python2对应的版本

pip3 install face_recognition

如果你遇到了幺蛾子,可以用Ubuntu虚拟机安装本项目,看下面这个教程。
如何使用Adam Geitgey大神提供的Ubuntu虚拟机镜像文件安装配置虚拟机,本项目已经包含在镜像中.

在树莓派上安装

  • 树莓派安装指南

在Windows上安装

虽然本项目官方并不支持Windows,但一些大神们摸索出了在Windows上运行本项目的方法:

  • @masoudr写的教程:如何在Win10系统上安装 dlib库和 face_recognition项目

使用Ubuntu虚拟机镜像文件安装配置虚拟机,本项目已经包含在这个镜像中

  • 如何使用Adam Geitgey大神提供的Ubuntu虚拟机镜像文件安装配置虚拟机,本项目已经包含在镜像中(需要电脑中安装VMWare Player 或者 VirtualBox)

使用方法

命令行界面

当你安装好了本项目,你可以使用两种命令行工具:

  • face_recognition - 在单张图片或一个图片文件夹中认出是谁的脸。
  • face_detection - 在单张图片或一个图片文件夹中定位人脸位置。

face_recognition 命令行工具

face_recognition命令行工具可以在单张图片或一个图片文件夹中认出是谁的脸。

首先,你得有一个你已经知道名字的人脸图片文件夹,一个人一张图,图片的文件名即为对应的人的名字:

known

然后,你需要第二个图片文件夹,文件夹里面是你希望识别的图片:

unknown

然后,你在命令行中切换到这两个文件夹所在路径,然后使用face_recognition命令行,传入这两个图片文件夹,然后就会输出未知图片中人的名字:

$ face_recognition ./pictures_of_people_i_know/ ./unknown_pictures//unknown_pictures/unknown.jpg,Barack Obama
/face_recognition_test/unknown_pictures/unknown.jpg,unknown_person

输出结果的每一行对应着图片中的一张脸,图片名字和对应人脸识别结果用逗号分开。

如果结果输出了unknown_person,那么代表这张脸没有对应上已知人脸图片文件夹中的任何一个人。

face_detection 命令行工具

face_detection命令行工具可以在单张图片或一个图片文件夹中定位人脸位置(输出像素点坐标)。

在命令行中使用face_detection,传入一个图片文件夹或单张图片文件来进行人脸位置检测:

$ face_detection  ./folder_with_pictures/examples/image1.jpg,65,215,169,112
examples/image2.jpg,62,394,211,244
examples/image2.jpg,95,941,244,792

输出结果的每一行都对应图片中的一张脸,输出坐标代表着这张脸的上、右、下、左像素点坐标。

调整人脸识别的容错率和敏感度

如果一张脸识别出不止一个结果,那么这意味着他和其他人长的太像了(本项目对于小孩和亚洲人的人脸识别准确率有待提升)。你可以把容错率调低一些,使识别结果更加严格。

通过传入参数 --tolerance 来实现这个功能,默认的容错率是0.6,容错率越低,识别越严格准确。

$ face_recognition --tolerance 0.54 ./pictures_of_people_i_know/ ./unknown_pictures//unknown_pictures/unknown.jpg,Barack Obama
/face_recognition_test/unknown_pictures/unknown.jpg,unknown_person

如果你想看人脸匹配的具体数值,可以传入参数 --show-distance true

$ face_recognition --show-distance true ./pictures_of_people_i_know/ ./unknown_pictures//unknown_pictures/unknown.jpg,Barack Obama,0.378542298956785
/face_recognition_test/unknown_pictures/unknown.jpg,unknown_person,None

更多的例子

如果你并不在乎图片的文件名,只想知道文件夹中的图片里有谁,可以用这个管道命令:

$ face_recognition ./pictures_of_people_i_know/ ./unknown_pictures/ | cut -d ',' -f2Barack Obama
unknown_person

加速人脸识别运算

如果你的CPU是多核的,你可以通过并行运算加速人脸识别。例如,如果你的CPU有四个核心,那么你可以通过并行运算提升大概四倍的运算速度。

如果你使用Python3.4或更新的版本,可以传入 --cpus <number_of_cpu_cores_to_use> 参数:

$ face_recognition --cpus 4 ./pictures_of_people_i_know/ ./unknown_pictures/

你可以传入 --cpus -1参数来调用cpu的所有核心。

子豪兄批注:树莓派3B有4个CPU核心,传入多核参数可以显著提升图片识别的速度(亲测)。

Python 模块:face_recognition

在Python中,你可以导入face_recognition模块,调用我们提供的丰富的API接口,用几行代码就可以轻松玩转各种人脸识别功能!

API 接口文档: https://face-recognition.readthedocs.io

在图片中定位人脸的位置

import face_recognitionimage = face_recognition.load_image_file("my_picture.jpg")
face_locations = face_recognition.face_locations(image)# face_locations is now an array listing the co-ordinates of each face!

看 案例:定位拜登的脸

案例:定位拜登的脸

你也可以使用深度学习模型达到更加精准的人脸定位。

注意:这种方法需要GPU加速(通过英伟达显卡的CUDA库驱动),你在编译安装dlib的时候也需要开启CUDA支持。

import face_recognitionimage = face_recognition.load_image_file("my_picture.jpg")
face_locations = face_recognition.face_locations(image, model="cnn")# face_locations is now an array listing the co-ordinates of each face!

看 案例:使用卷积神经网络深度学习模型定位拜登的脸

如果你有很多图片需要识别,同时又有GPU,那么你可以参考这个例子:案例:使用卷积神经网络深度学习模型批量识别图片中的人脸.

识别单张图片中人脸的关键点

import face_recognitionimage = face_recognition.load_image_file("my_picture.jpg")
face_landmarks_list = face_recognition.face_landmarks(image)# face_landmarks_list is now an array with the locations of each facial feature in each face.
# face_landmarks_list[0]['left_eye'] would be the location and outline of the first person's left eye.

看这个案例 案例:提取奥巴马和拜登的面部关键点

案例:提取奥巴马和拜登的面部关键点

 

识别图片中的人是谁

import face_recognitionpicture_of_me = face_recognition.load_image_file("me.jpg")
my_face_encoding = face_recognition.face_encodings(picture_of_me)[0]# my_face_encoding now contains a universal 'encoding' of my facial features that can be compared to any other picture of a face!unknown_picture = face_recognition.load_image_file("unknown.jpg")
unknown_face_encoding = face_recognition.face_encodings(unknown_picture)[0]# Now we can see the two face encodings are of the same person with `compare_faces`!results = face_recognition.compare_faces([my_face_encoding], unknown_face_encoding)if results[0] == True:print("It's a picture of me!")
else:print("It's not a picture of me!")

看这个案例 案例:是奥巴马还是拜登?

Python 案例

所有案例都在这个链接中 也就是examples文件夹.

人脸定位

  • 案例:定位拜登的脸
  • 案例:使用卷积神经网络深度学习模型定位拜登的脸
  • 案例:使用卷积神经网络深度学习模型批量识别图片中的人脸
  • 案例:把来自网络摄像头视频里的人脸高斯模糊(需要安装OpenCV)

人脸关键点识别

  • 案例:提取奥巴马和拜登的面部关键点
  • 案例:给美国副总统拜登涂美妆

人脸识别

  • 案例:是奥巴马还是拜登?
  • 案例:人脸识别之后在原图上画框框并标注姓名
  • 案例:在不同精度上比较两个人脸是否属于一个人
  • 案例:从摄像头获取视频进行人脸识别-较慢版(需要安装OpenCV)
  • 案例:从摄像头获取视频进行人脸识别-较快版(需要安装OpenCV)
  • 案例:从视频文件中识别人脸并把识别结果输出为新的视频文件(需要安装OpenCV)
  • 案例:通过树莓派摄像头进行人脸个数统计及人脸身份识别
  • 案例:通过浏览器HTTP访问网络服务器进行人脸识别(需要安装Flask后端开发框架))
  • 案例:基于K最近邻KNN分类算法进行人脸识别

关于 face_recognition的文章和教程

  • 本项目作者写的一篇文章 Modern Face Recognition with Deep Learning
    • 主要内容:基本算法和原理
  • Face recognition with OpenCV, Python, and deep learning by Adrian Rosebrock
    • 主要内容:如何实际使用本项目
  • Raspberry Pi Face Recognition by Adrian Rosebrock
    • 主要内容:如何在树莓派上使用本项目
  • Face clustering with Python by Adrian Rosebrock
    • 主要内容:使用非监督学习算法实现把图片中的人脸高斯模糊

人脸识别的原理

如果你想更深入了解人脸识别这个黑箱的原理 读这篇文章。

子豪兄批注:一定要看这篇文章,讲的既有趣又有料。

警告说明

  • 本项目的人脸识别模型是基于成年人的,在孩子身上效果可能一般。如果图片中有孩子的话,建议把临界值设为0.6.
  • 不同人种的识别结果可能不同, 看wiki百科页面 查看更多细节。

把本项目部署在云服务器上 (Heroku, AWS等)

本项目是基于C++库dlib的,所以把本项目部署在Heroku或者AWS的云端服务器上是很明智的。

为了简化这个过程,有一个Dockerfile案例,教你怎么把face_recognition开发的app封装成Docker 容器文件,你可以把它部署在所以支持Docker镜像文件的云服务上。

出了幺蛾子?

如果出了问题,请在Github提交Issue之前查看 常见错误 。




链接:https://www.jianshu.com/p/0b37452be63e
 

http://www.lryc.cn/news/2414136.html

相关文章:

  • rx 文件管理器_免费开源资源管理器——RX 文件管理器
  • asp毕业设计——基于asp+access的教师信息管理系统设计与实现(毕业论文+程序源码)——教师信息管理系统
  • 通过JavaEye2.0网站看ruby on rails性能
  • QQ快速登录协议分析
  • 【RDMA】技术详解(一):RDMA概述
  • 面试专区|【60道计算机网络高频题整理(附答案背诵版)】
  • Codeigniter 框架开启PDO查询方式、多库连接实现、多语言网站开发配置、以及捕获页面最后报错
  • java语言技术_Java语言四大核心技术详解
  • WEB前端开发准备-Atom编辑器使用说明 Atom常用插件推荐 Atom快捷键
  • GUI Design Studio 4.5.151.0原型设计工具的使用
  • DOM4J 知识详解
  • 简单了解cms(内容管理系统)
  • [Visual Studio 2022 C#]设置splitContainer拆分器中间分隔条splitter的颜色和宽度
  • 【reverse】通俗易懂的gcc内联汇编入门+示例:实现花指令
  • C#窗体应用程序之CheckListBox复选列表与ListBox列表框控件
  • netframework有什么用_C#初学者教程系列1:什么是.NET Framework?
  • 使用fastdb的感受
  • 对SHFileOperation函数的一点研究
  • Java(API)——正则表达式
  • FieldTrip toolbox教程系列(0)-安装、配置与测试
  • linux 升级 java 8,生产环境 JDK6 升级至 JDK8
  • ExcuteReader详解
  • CImage拷贝到另一个CImage,两个方法
  • 备战数学建模4-MATLAB绘制三维图形
  • MatchPuppy:狗狗相亲网站
  • Request.QueryString
  • 电脑蓝屏怎么办 七大原因及解决办法来帮你
  • MATLAB实现随机数方法合集
  • 1、Intent和IntentFilter详解
  • 如何浏览yandex广告报表?