当前位置: 首页 > article >正文

OpenCV种的cv::Mat与Qt种的QImage类型相互转换

一、首先了解cv::Mat结构体

cv::Mat::step与QImage转换有着较大的关系。

step的几个类别区分:

  • step:矩阵第一行元素的字节数
  • step[0]:矩阵第一行元素的字节数
  • step[1]:矩阵中一个元素的字节数
  • step1(0):矩阵中一行有几个通道数
  • step1(1):一个元素有几个通道数(channel())
    cv::Mat cvmat(3, 4, CV_16UC4, cv::Scalar_<uchar>(1, 2, 3, 4));std::cout << cvmat<< std::endl;std::cout << "step:" << cvmat.step << std::endl;std::cout << "step[0]:" << cvmat.step[0] << std::endl;std::cout << "step[1]:" << cvmat.step[1] << std::endl;std::cout << "step1(0):" << cvmat.step1(0) << std::endl;std::cout << "step1(1):" << cvmat.step1(1) << std::endl;

运行结果:

分析:
创建了一个3∗4的16位4通道的矩阵;

每一个元素赋值为1,2,3,4;可以看到生成了3*4*4的矩阵;

因为创建的是16位的,所以每一个通道是2个字节数;

所以一行共有4*4*2=32个字节数,故step和step[0]都为32;

因为一个元素有4个通道,每个通道2个字节,所以1个元素的字节数step[1]为4*2=8;

一行是4个元素,每个元素是4个通道,所以一行的通道数,step1(0)为4*4=16,step1(1)为4;

二、cv::Mat转QImage

代码示例为拷贝转换:

QImage cvMat2QImage(const cv::Mat& mat) 
{if (mat.empty()){return QImage();}QImage image;switch (mat.type()){case CV_8UC1:{image = QImage((const uchar*)(mat.data),mat.cols, mat.rows, mat.step,QImage::Format_Grayscale8);return image.copy();}case CV_8UC2:{mat.convertTo(mat, CV_8UC1);image = QImage((const uchar*)(mat.data),mat.cols, mat.rows, mat.step,QImage::Format_Grayscale8);return image.copy();}case CV_8UC3:{// Copy input Matconst uchar *pSrc = (const uchar*)mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_8UC4:{// Copy input Matconst uchar *pSrc = (const uchar*)mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_ARGB32);return image.copy();}case CV_32FC1:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;QImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_32FC3:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX,-1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_64FC1:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;QImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_64FC3:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_32SC1:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;QImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_32SC3:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_16SC1:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;QImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_16SC3:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_8SC1:{//Mat normalize_mat;//normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);mat.convertTo(mat, CV_8U);const uchar *pSrc = (const uchar*)mat.data;QImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_8SC3:{mat.convertTo(mat, CV_8U);const uchar *pSrc = (const uchar*)mat.data;QImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_RGB888);return image.rgbSwapped();}default:mat.convertTo(mat, CV_8UC3);QImage image((const uchar*)mat.data, mat.cols, mat.rows, mat.step, QImage::Format_RGB888);return image.rgbSwapped();return QImage();break;}
}

三、QImage转cv::Mat

示例代码为共享内存转换:

cv::Mat QImage2cvMat(QImage& image)
{cv::Mat mat;//qDebug() << image.format();switch (image.format()){case QImage::Format_ARGB32:mat = cv::Mat(image.height(), image.width(), CV_8UC4, (void*)image.constBits(), image.bytesPerLine());break;case QImage::Format_RGB32:mat = cv::Mat(image.height(), image.width(), CV_8UC3, (void*)image.constBits(), image.bytesPerLine());//cv::cvtColor(mat, mat, CV_BGR2RGB);break;case QImage::Format_ARGB32_Premultiplied:mat = cv::Mat(image.height(), image.width(), CV_8UC4, (void*)image.constBits(), image.bytesPerLine());break;case QImage::Format_RGB888:mat = cv::Mat(image.height(), image.width(), CV_8UC3, (void*)image.constBits(), image.bytesPerLine());//cv::cvtColor(mat, mat, CV_BGR2RGB);break;case QImage::Format_Indexed8:mat = cv::Mat(image.height(), image.width(), CV_8UC1, (void*)image.constBits(), image.bytesPerLine());break;case QImage::Format_Grayscale8:mat = cv::Mat(image.height(), image.width(), CV_8UC1, (void*)image.constBits(), image.bytesPerLine());break;}return mat;
}

http://www.lryc.cn/news/2401309.html

相关文章:

  • 机器学习——什么时候使用决策树
  • llm-d:面向Kubernetes的高性能分布式LLM推理框架
  • 前端没有“秦始皇“,但可以做跨端的王[特殊字符]
  • Flutter如何支持原生View
  • mongodb源码分析session异步接受asyncSourceMessage()客户端流变Message对象
  • 【数据分析】什么是鲁棒性?
  • 适老化场景重构:现代家政老年照护虚拟仿真实训室建设方案​
  • Qt/C++学习系列之QGroupBox控件的简单使用
  • Ubuntu设置之初始化
  • 如何轻松地将数据从 iPhone传输到iPhone 16
  • 开源供应链攻击持续发酵,多个软件包仓库惊现恶意组件
  • Docker Compose 备忘
  • 量子计算+AI:特征选择与神经网络优化创新应用
  • 算法分析与设计-动态规划、贪心算法
  • 光伏功率预测新突破:TCN-ECANet-GRU混合模型详解与复现
  • React组件基础
  • 2025年5月24日系统架构设计师考试题目回顾
  • ABP 框架集成 EasyAbp.Abp.GraphQL 构建高性能 GraphQL API
  • C# 用户控件(User Control)详解:创建、使用与最佳实践
  • OpenWrt 搭建 samba 服务器的方法并解决 Windows 不允许访问匿名服务器(0x80004005的错误)的方法
  • 【 Redis | 完结篇 缓存优化 】
  • AI数据集构建:从爬虫到标注的全流程指南
  • Android 颜色百分比对照
  • AI破局:饿了么如何搅动即时零售江湖
  • 04 APP 自动化- Appium toast 元素定位列表滑动
  • 判断它是否引用了外部库
  • 物流项目第十期(轨迹微服务)
  • Python 入门到进阶全指南:从语言特性到实战项目
  • 【数据库】关系数据理论--规范化
  • SQL 中 JOIN 的执行顺序优化指南