当前位置: 首页 > article >正文

基于贝叶斯优化神经网络的光伏功率预测综述

基于贝叶斯优化神经网络的光伏功率预测综述

一、贝叶斯优化的基本原理与核心组件

贝叶斯优化(Bayesian Optimization, BO)是一种基于概率模型的全局优化方法,特别适用于高成本评估的黑盒函数优化问题。其核心由代理模型采集函数构成:

  1. 代理模型:通过高斯过程(Gaussian Process, GP)或TPE(Tree-structured Parzen Estimator)对目标函数进行概率建模。GP通过核函数定义潜在函数的分布,能够量化预测的不确定性。
  2. 采集函数:指导搜索方向,平衡探索(未知区域)与利用(已知最优区域)。常用函数包括期望提升(EI)、置信上界(UCB)和概率提升(PI)。

贝叶斯优化的优势在于样本效率高,尤其适合神经网络的超参数调优(如学习率、层数、正则化参数)。


二、光伏功率预测的神经网络架构及挑战

光伏功率预测需处理时空特征气象因素的复杂影响。常用模型包括:

  1. 混合深度学习模型
    • CNN-BiLSTM:卷积神经网络(CNN)提取空间特征(如云图、辐照度分布),双向LSTM捕捉时序依赖性。
    • 注意力机制增强模型:如CNN-SENet-BiLSTM,通过通道注意力(SENet)动态加权关键特征,提升模型判别能力。
  2. 分解与融合策略:采用变分模态分解(VMD)将非平稳功率序列分解为平稳子模态,降低噪声干扰。

挑战包括:

  • 数据特性:光伏功率具有强波动性、昼夜/季节周期性,且受云层、温度、湿度等多因素影响。
  • 模型复杂度:单一模型易陷入过拟合或训练效率低下,需结合分解、特征筛选(如皮尔逊相关系数、互信息法)。

三、贝叶斯优化与神经网络的结合方法
  1. 超参数自动调优
    • 目标函数定义:以验证集误差(如RMSE、MAE)为优化目标,通过贝叶斯优化搜索最优网络结构、学习率、批量大小等。
    • 并行化加速:使用Ax、BOTorch等工具实现多核并行实验,降低调优时间。
  2. 模型集成与不确定性量化
    • 贝叶斯神经网络:通过变分推断量化预测不确定性,输出置信区间(如GRU-贝叶斯模型)。
    • 多模型融合:结合贝叶斯优化的CNN-LSTM与XGBoost,提升鲁棒性。

典型案例

  • VMD-BiLSTM-AM-CS模型:通过贝叶斯优化布谷鸟算法(CS)调整BiLSTM参数,减少局部最优风险。
  • Bayes-CNN路面光伏预测:优化CNN的批大小和学习率,预测最大功率点电压的误差降低20%以上。

四、关键影响因素与数据预处理
  1. 输入特征筛选
    • 气象因素:全球水平辐照度(GHI)、温度、风速对功率呈正相关;湿度、降水呈负相关。
    • 电气参数:电流、电压等实时监测数据通过互信息法筛选。
  2. 数据预处理
    • 分解去噪:VMD或小波分解处理非平稳序列。
    • 相似日聚类:按天气类型(晴天、多云、雨天)划分数据集,提升模型针对性。

五、实际应用与性能评估
  1. 实验验证
    • 数据集:中国西北地区分布式光伏电站、NREL太阳能数据库等。
    • 评价指标:均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R²)。
  2. 性能对比
    • CNN-SENet-BiLSTM:相比传统LSTM,RMSE降低15%-30%。
    • 贝叶斯优化LSTM-Attention模型:晴天预测误差低于8.34%,多云天气误差显著改善。

六、挑战与未来方向
  1. 当前局限
    • 高维优化:GP的计算复杂度随维度立方增长,需引入深度神经网络代理模型(如NASBOT)提升可扩展性。
    • 数据异构性:分布式光伏站点数据分布差异大,需结合联邦学习框架。
  2. 未来趋势
    • 迁移学习:跨站点知识迁移减少数据需求。
    • 多目标优化:同时优化预测精度、计算成本和模型复杂度。

七、结论

贝叶斯优化通过智能平衡探索与利用,显著提升了神经网络在光伏功率预测中的性能,尤其在超参数自动调优和不确定性量化方面表现突出。未来研究需进一步解决高维计算效率、多源数据融合等问题,推动光伏预测技术向更高精度和实用性发展。

http://www.lryc.cn/news/2398103.html

相关文章:

  • 【C++11】折叠引用和完美转发
  • 数据结构:递归:自然数之和
  • 网易 - 灵犀办公文档
  • 【C++】模板与特化技术全面教程(claude sonnet 4)
  • ABAP设计模式之---“高内聚,低耦合(High Cohesion Low Coupling)”
  • RagFlow优化代码解析(一)
  • 【python与生活】用 Python 从视频中提取音轨:一个实用脚本的开发与应用
  • 深度强化学习赋能城市消防优化,中科院团队提出DRL新方法破解设施配置难题
  • 云原生周刊:探索 Gateway API v1.3.0
  • 008房屋租赁系统技术揭秘:构建智能租赁服务生态
  • Python训练打卡Day41
  • spring-boot-admin实现对微服务监控
  • Linux 权限管理入门:从基础到实践
  • Mycat的监控
  • Glide源码解析
  • 7.RV1126-OPENCV cvtColor 和 putText
  • Android 之 kotlin 语言学习笔记二(编码样式)
  • Redisson单机模式
  • 数据结构第6章 图(竟成)
  • 机器人现可完全破解验证码:未来安全技术何去何从?
  • CppCon 2014 学习:(Costless)Software Abstractions for Parallel Architectures
  • 网络爬虫 - App爬虫及代理的使用(十一)
  • Kafka集群部署(docker容器方式)SASL认证(zookeeper)
  • 【python爬虫】利用代理IP爬取filckr网站数据
  • 群晖 NAS 如何帮助培训学校解决文件管理难题
  • NLP学习路线图(十八):Word2Vec (CBOW Skip-gram)
  • P1438 无聊的数列/P1253 扶苏的问题
  • 嵌入式学习笔记 - 新版Keil软件模拟时钟Xtal灰色不可更改的问题
  • k8s的出现解决了java并发编程胡问题了
  • 如何利用大语言模型生成特定格式文风的报告类文章