当前位置: 首页 > article >正文

deepseek原理和项目实战笔记2 -- deepseek核心架构

混合专家(MoE)

​​混合专家(Mixture of Experts, MoE)​​ 是一种机器学习模型架构,其核心思想是通过组合多个“专家”子模型(通常为小型神经网络)来处理不同输入,从而提高模型的容量和效率。MoE的关键特点是​​动态激活​​:对于每个输入,仅调用部分相关的专家进行计算,而非全部,从而在保持模型规模的同时降低计算成本。
MoE架构是一种创新的模型架构,通过引入多个“专家网络”来提升模型的表达能力和计算效率。在MoE架构中,多个专家网络被独立设计为处理不同的特定任务或特定特征,模型根据输入数据的特点动态选择部分专家{L-End}参与计算,而不是同时激活所有专家网络。这种“按需计算”的方式显著减少了资源消耗,同时提升了模型的灵活性和任务适配能力。MoE的核心思想是通过动态路由机制,在每次推理或训练中只激活一部分专家,从而在大规模模型中实现参数规模的扩展,而不会显著增加计算开销。

MoE的优势与意义

MoE架构的引入为大规模模型解决了参数扩展与计算效率之间的矛盾,在以下几个方面形成了优势。
(1)参数规模的扩展:MoE架构允许模型拥有超大规模的参数量,但每次计算中只需要激活一小部分参数,从而大幅提升模型的表达能力。
(2)高效资源利用:通过动态选择专家,MoE架构避免了计算资源的浪费,同时节省了显存和计算成本。
(3)任务适配能力增强:不同的专家网络可以针对不同任务进行优化,使模型在多任务环境中具备更强的适应性。
(4)分布式训练的友好性:MoE架构天然适配分布式计算环境,通过将不同的专家网络分布到多个计算节点,显著提升了并行计算效率。

在这里插入图片描述

http://www.lryc.cn/news/2397845.html

相关文章:

  • 在 MATLAB 2015a 中如何调用 Python
  • 房屋租赁系统 Java+Vue.js+SpringBoot,包括房屋类型、房屋信息、预约看房、合同信息、房屋报修、房屋评价、房主管理模块
  • 华为OD机试真题——生成哈夫曼树(2025B卷:100分)Java/python/JavaScript/C/C++/GO六种最佳实现
  • react与vue的渲染原理
  • 我提出结构学习的思路,意图用结构学习代替机器学习
  • Outbox模式:确保微服务间数据可靠交换的设计方案
  • 数据可视化的定义和类型
  • sqlite-vec:谁说SQLite不是向量数据库?
  • Redis最佳实践——性能优化技巧之监控与告警详解
  • R3GAN训练自己的数据集
  • MATLAB实战:Arduino硬件交互项目方案
  • bert扩充或者缩小词表
  • 什么是 TOML?
  • git怎么合并两个分支
  • 1.文件操作相关的库
  • Pytorch中一些重要的经典操作和简单讲解
  • 【容器docker】启动容器kibana报错:“message“:“Error: Cannot find module ‘./logs‘
  • 基于bp神经网络的adp算法
  • C#里与嵌入式系统W5500网络通讯(4)
  • Spring boot集成milvus(spring ai)
  • Visual Studio+SQL Server数据挖掘
  • maven项目编译时复制xml到classes目录方案
  • 通过阿里云服务发送邮件
  • Vad-R1:通过从感知到认知的思维链进行视频异常推理
  • 黑马Java面试笔记之MySQL篇(事务)
  • 群辉(synology)NAS老机器连接出现网页端可以进入,但是本地访问输入一样的账号密码是出现错误时解决方案
  • C++多重继承详解与实战解析
  • 【深度学习】实验四 卷积神经网络CNN
  • 实现一个免费可用的文生图的MCP Server
  • 无公网ip远程桌面连接不了怎么办?内网计算机让外网访问方法和问题分析