当前位置: 首页 > article >正文

【深度学习】实验四 卷积神经网络CNN

 实验四  卷积神经网络CNN

一、实验学时: 2学时

二、实验目的

  1. 掌握卷积神经网络CNN的基本结构;
  2. 掌握数据预处理、模型构建、训练与调参;
  3. 探索CNN在MNIST数据集中的性能表现;

三、实验内容

实现深度神经网络CNN。

四、主要实验步骤及结果

1.搭建一个CNN网络,使用MNIST手写数字数据集进行训练与测试,并体现模型最终结果,CNN网络的具体框架可参考下图,也可自己设计:

图4-1 CNN架构图

(1)该图表示输入层为28*28*1的尺寸,符合MNIST数据集的标准尺寸。

(2)第一个卷积层,使用5*5卷积核,32个滤波器,填充(Padding)为2。输出尺寸为28*28*32。

(3)第一个池化层,使用2*2池化窗口,步长(stride)为2。输出尺寸为14*14*32。

(4)第二个卷积层,使用5*5卷积核,64个滤波器,填充(Padding)为2。输出尺寸为14*14*64。

(5)第二个池化层,使用2*2池化窗口,步长(stride)为2。输出尺寸为7*7*64。

(6)全连接层包含1024个神经元,输出尺寸为1*1*1024。

(7)Dropout层用于防止过拟合。

(8)输出层包含10个神经元,对应手写数字的0-9。输出尺寸为1*1*10。

模型实现:

以该架构图搭建CNN网络,使用MNIST手写数字数据集进行训练与测试,训练和测试结果如图4-2所示:

图4-2 CNN测试结果

2.尝试使用不同的数据增强方法、优化器、损失函数、学习率、batch size和迭代次数来进行训练,记录训练过程,评估模型性能,保存最佳模型。

编号

batch size

训练轮次

学习率

数据增强方法

优化器

实验结果

1

32

2

1e-4

Adam

98.62%

2

64

2

1e-4

Adam

98.56%

3

64

4

1e-4

Adam

99.08%

4

64

4

3e-4

Adam

99.08%

5

64

4

3e-4

旋转+平移

Adam

98.90%

5

64

4

3e-4

Adam(L2正则化)

99.23%

6

64

4

1e-4

SGD+momentum

97.30%

其中数据增强方法采用随机旋转和平移吗,原始代码中包含ToTensor()和Normalize(),给原始代码添加随机旋转10度和随机平移10%,代码如下:

# 数据加载(归一化)
transform = torchvision.transforms.Compose([torchvision.transforms.RandomRotation(10),  # 随机旋转10度torchvision.transforms.RandomAffine(0, translate=(0.1, 0.1)),  # 随机平移10%torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,), (0.3081,))
])

优化器选择方面使用SGD+momentum(0.9)替代原Adam优化器,

# 使用SGD+momentum
optimizer = torch.optim.SGD(model.parameters(), lr=LEARN_RATE, momentum=0.9)

根据训练过程记录的数据,最佳模型尊却绿为99.23%,最佳模型代码如下:

import torch
import torchvision
import torch.nn as nn
from torch.utils.data import DataLoaderBATCH_SIZE = 64
EPOCHS = 4
LEARN_RATE = 3e-4
DROPOUT_RATE = 0.5device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')# 数据加载(归一化)
transform = torchvision.transforms.Compose([# torchvision.transforms.RandomRotation(10),  # 随机旋转10度# torchvision.transforms.RandomAffine(0, translate=(0.1, 0.1)),  # 随机平移10%torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,), (0.3081,))
])train_data = torchvision.datasets.MNIST(root='./mnist',train=True,download=True,transform=transform
)
train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True)test_data = torchvision.datasets.MNIST(root='./mnist',train=False,transform=transform
)
test_loader = DataLoader(test_data, batch_size=1000, shuffle=False)class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv_layers = nn.Sequential(# 第一层卷积:5x5 卷积核,32 个过滤器,padding=2nn.Conv2d(1, 32, kernel_size=5, padding=2),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2),  # 池化后 14x14x32# 第二层卷积:5x5 卷积核,64 个过滤器,padding=2nn.Conv2d(32, 64, kernel_size=5, padding=2),nn.ReLU(),nn.MaxPool2d(kernel_size=2, stride=2)  # 池化后 7x7x64)self.fc_layers = nn.Sequential(nn.Linear(64 * 7 * 7, 1024),  # 全连接层:7x7x64 → 1024nn.ReLU(),nn.Dropout(DROPOUT_RATE),  # Dropout层nn.Linear(1024, 10)  # 输出层:1024 → 10)self._initialize_weights()def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')nn.init.constant_(m.bias, 0)def forward(self, x):x = self.conv_layers(x)x = x.view(x.size(0), -1)  # 展平操作x = self.fc_layers(x)return xmodel = CNN().to(device)
loss_fn = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=LEARN_RATE, weight_decay=1e-5)
# optimizer = torch.optim.SGD(model.parameters(), lr=LEARN_RATE, momentum=0.9)  # 使用SGD+momentum
# 训练循环
for epoch in range(EPOCHS):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = loss_fn(output, target)loss.backward()optimizer.step()if batch_idx % 100 == 0:print(f'Epoch {epoch + 1} [{batch_idx * len(data)}/{len(train_loader.dataset)}] Loss: {loss.item():.4f}')# 测试
model.eval()
correct = 0
with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)pred = output.argmax(dim=1)correct += pred.eq(target).sum().item()print(f'Test Accuracy: {correct}/{len(test_loader.dataset)} ({100. * correct / len(test_loader.dataset):.2f}%)')

3.使用画图工具将自己的学号逐个写出,使用保存的最佳模型对每个数字进行推理,比较模型对每个数字的准确率预测,也可以尝试实现一个实时识别手写数字的demo。
(1)使用画图工具将自己的学号逐个写出,进行反色处理,并将图片命名为“x_001.png”格式。

图4-3手写数字

(2)在训练代码(CNN.py)中添加模型保存代码。

torch.save(model.state_dict(), 'mnist_cnn.pth')

(3)编写推理代码读取img文件夹中的手写图片并预测,预测代码如下所示:

import torch
import torch.nn as nn
from torchvision import transforms
from PIL import Image
import numpy as np
import os# 定义模型结构(需与训练代码一致)
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv_layers = nn.Sequential(nn.Conv2d(1, 32, kernel_size=5, padding=2),nn.ReLU(),nn.MaxPool2d(2, 2),nn.Conv2d(32, 64, kernel_size=5, padding=2),nn.ReLU(),nn.MaxPool2d(2, 2))self.fc_layers = nn.Sequential(nn.Linear(64 * 7 * 7, 1024),nn.ReLU(),nn.Dropout(0.5),nn.Linear(1024, 10))def forward(self, x):x = self.conv_layers(x)x = x.view(x.size(0), -1)x = self.fc_layers(x)return x# 加载模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = CNN().to(device)
model.load_state_dict(torch.load('mnist_cnn.pth', map_location=device))
model.eval()# 定义预处理(与训练一致)
transform = transforms.Compose([transforms.Resize((28, 28)),  # 确保输入为28x28transforms.Grayscale(num_output_channels=1),  # 转换为单通道transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))
])# 遍历img文件夹中的图片并推理
img_dir = 'img'
digit_stats = {str(i): {'correct': 0, 'total': 0} for i in range(10)}for filename in os.listdir(img_dir):if filename.lower().endswith(('.png', '.jpg', '.jpeg')):# 从文件名中提取真实标签(假设文件名为 "label_xxx.png")try:true_label = filename.split('_')[0]  # 例如文件名 "3_001.png" → 标签为3true_label = int(true_label)if true_label < 0 or true_label > 9:continueexcept:print(f"跳过文件 {filename}(文件名格式错误)")continue# 加载并预处理图像img_path = os.path.join(img_dir, filename)image = Image.open(img_path)image = transform(image).unsqueeze(0).to(device)  # 添加batch维度# 推理with torch.no_grad():output = model(image)pred = output.argmax(dim=1).item()# 统计结果digit_stats[str(true_label)]['total'] += 1if pred == true_label:digit_stats[str(true_label)]['correct'] += 1print(f"图片 {filename} 真实标签: {true_label}, 预测: {pred} → {'正确' if pred == true_label else '错误'}")# 计算每个数字的准确率
accuracies = {}
for digit in digit_stats:if digit_stats[digit]['total'] > 0:acc = digit_stats[digit]['correct'] / digit_stats[digit]['total']accuracies[digit] = accprint(f"数字 {digit} 的准确率: {acc:.2%}")

预测结果如图4-4所示:

图4-4预测结果

预测结果显示“1”和“4”预测结果错误,其他均正确。

五、实验小结(包括问题和解决办法、心得体会、意见与建议等)

1.问题和解决办法:

问题1:RuntimeError: Dataset not found. You can use download=True to download it。

解决方法:添加下载训练集的参数download=True。

问题2:使用SGD+momentum优化器后,准确率反而下降了。

解决方法:因为SGD对学习率比较敏感,学习率没有适配,使用StepLR梯度衰减,另外也可以增加训练轮次。

问题3:预测结果全部错误。

解决方法:图片要像素28*28,且黑色背景,白色笔迹,对Windows画图的图片反色处理即可。

2.心得体会:通过本次CNN手写数字识别实验的完整实践,我深刻体会到深度学习模型性能的提升是一个系统工程,需要从数据、模型、训练策略到结果分析的全流程精细化把控,尝试使用不同的数据增强方法、优化器、损失函数、学习率、batch size和迭代次数来进行训练,迭代出最佳模型,再手写数字进行测试。通过以上的学习和实践,我对神经网络的原理和应用有了更深入的理解。神经网络的发展给人工智能带来了巨大的影响,它在图像识别、自然语言处理等领域发挥着重要的作用。我相信,随着技术的进步,神经网络将会有更广泛的应用。

http://www.lryc.cn/news/2397815.html

相关文章:

  • 实现一个免费可用的文生图的MCP Server
  • 无公网ip远程桌面连接不了怎么办?内网计算机让外网访问方法和问题分析
  • 【手搓一个原生全局loading组件解决页面闪烁问题】
  • CSS基础巩固-基础-选择
  • 一种在SQL Server中传递多行数据的方法
  • 【Docker 从入门到实战全攻略(一):核心概念 + 命令详解 + 部署案例】
  • github 提交失败,连接不上
  • 系统架构设计师(一):计算机系统基础知识
  • VMware安装Ubuntu全攻略
  • 清理 pycharm 无效解释器
  • 精益数据分析(92/126):指标基准化——如何判断你的数据表现是否足够优秀
  • 手机如何压缩文件为 RAR 格式:详细教程与工具推荐
  • Elasticsearch集群管理的相关工具介绍
  • 基于多尺度卷积和扩张卷积-LSTM的多变量时间序列预测
  • Java 注解式限流教程(使用 Redis + AOP)
  • C# XAML 基础:构建现代 Windows 应用程序的 UI 语言
  • Linux运维笔记:服务器感染 netools 病毒案例
  • (面试)获取View宽高的几种方式
  • 【Linux】进程地址空间揭秘(初步认识)
  • 设计模式——备忘录设计模式(行为型)
  • 吴恩达:构建自动化评估并不需要大量投入,从一些简单快速的示例入手,然后逐步迭代!
  • 鸿蒙OSUniApp内存管理优化实战:从入门到精通#三方框架 #Uniapp
  • Vue-5-基于JavaScript和plotly.js绘制数据分析类图表
  • UI自动化测试的革新,新一代AI工具MidScene.js实测!
  • StarRocks的几种表模型
  • 4. Qt对话框(2)
  • 2025-5-31-C++ 学习 字符串(终)
  • Android Studio 2022.2.1.20 汉化教程
  • 第17讲、odoo18可视化操作代码生成模块
  • golang -- slice 底层逻辑