当前位置: 首页 > article >正文

(九)PMSM驱动控制学习---无感控制之高阶滑膜观测器

        在之前的文章中,我们介绍了永磁同步电机无感控制中的滑模观测器,但是同时我们也认识到了他的缺点:因符号函数带来的高频切换分量,使用低通滤波器引发相位延迟;在本篇文章,我们将会介绍高阶滑模观测器的无感控制策略,该种方案拥有不需要经过低通滤波器的优势,收敛速度更快,能够增强观测精度,通过构造更复杂的滑模面,引入额外的滑膜增益项,可以有效地抑制外部噪声、系统参数变化等不确定性,拥有更强的鲁棒性。


目录

一.高阶状态变量

(1)一阶状态变量

(2)“高阶”状态变量

二.永磁同步电机数学模型

(1)永磁同步电机在两相静止坐标系下的数学模型为:

(2)扩展电动势

三.高阶滑模观测器设计

六.Simulink仿真


一.高阶状态变量

        状态变量是用来描述系统动态行为的一组变量,通常构成状态空间模型的基础。而状态变量本身都是通过一阶微分方程来描述的,不管原系统是几阶。

 (1)一阶状态变量

        一阶系统由单个一阶微分方程描述,仅需一个状态变量。例如:

        仅含一个状态变量 x

(2)“高阶”状态变量

        高阶系统(如n阶微分方程)通过引入多个一阶状态变量来简化。例如二阶系统可简化:

        可分解为:

        对应的状态方程:

        这里的“高阶”指原系统的微分方程阶数(如二阶、三阶),而非状态变量本身。指通过增加状态变量的数量来处理高阶系统,其每个状态变量仍是一阶的,但数量与系统阶数相等。

        在传统的滑膜观测器设计中,其状态估计变量是电流,而在我们的高阶滑膜观测器中,其状态估计变量除了电流,还有我们的反电动势。在后面会对其原理和设计进行介绍。


二.永磁同步电机数学模型

(1)永磁同步电机在两相静止坐标系下的数学模型为:

                                                                                                 ---式(1)

(2)扩展电动势(electromotive force,EMF)可以写为如下形式:

                                                                                                 ---式(2)


三.高阶滑模观测器设计

        设计我们高阶滑膜观测器的前提是,机械时间常数远大于电气时间常数,故ωe的导等于0;或者可以这么理解,在mcu的一个很短的控制周期内,速度变化量小,ωe的导约等于0

        所以我们可将式(2)求导并化简得到:

                                                                                                      ---式(3)

         将式(1)电流状态变量式(3)EMF作为高阶状态变量描述如下:

                                                                                                        ---式(4)

         式(4)中

         基于上式,我们设计高阶滑膜观测器为:

        将上矩阵展开得到:

                                                                                                        ---式(5) 

        在滑模面附近,有,所以带入式(5)中,两个不连续的高频切换控制分量可以等效表示为:

        将上式代入式(5)的后两式,可得:

                                                                                                        ---式(6) 

        由此可见,由于我们将符号函数用等效表示替代,式中没有出现因符号函数带来的高频切换分量。因此,使用高阶滑模观测器估计的角速度不需要经过低通滤波器,简化了控制系统结构。

        将公式编码到MCU迭代计算,调整增益矩阵中的参数使得观测器收敛,可得到反电动势矩阵反电动势中包含θe的信息,对其提取可得到速度与角度。当采用id=0控制时,有:

根据反电动势求解出电角度:

在经过PLL角度速度提取,即可得到角速度和电角度:

注:EEMF的收敛速度与转速密切相关,固定的滑模增益不能确定固定的系统阻尼。

后续还可以归一化PLL,使得观测角度与实际角度的传递函数根轨迹不再与转速相关,在本篇文章中暂且不予说明。


六.Simulink仿真

我们对式(5)式(6)进行建模,并在离散状态下迭代计算:

仿真中的模型Equ1-4分别对应着4个公式

其仿真数据检查器分别是:

        1.估计角速度---真实角速度

        2.估计电角度和真实电角度

        3.αβ反电动势

        4.电机三相电流

 

http://www.lryc.cn/news/2386020.html

相关文章:

  • 6个跨境电商独立站平台
  • 电子电路:电学都有哪些核心概念?
  • SQL进阶之旅 Day 2:基础查询优化技巧
  • 时序数据库 TDengine × Superset:一键构建你的可视化分析系统
  • 一键化部署
  • Win 系统 conda 如何配置镜像源
  • Devicenet主转Profinet网关助力改造焊接机器人系统智能升级
  • 《STL--list的使用及其底层实现》
  • whisper相关的开源项目 (asr)
  • python的pip怎么配置的国内镜像
  • PCB 通孔是电容性的,但不一定是电容器
  • 领域驱动设计与COLA框架:从理论到实践的落地之路
  • 公有云AWS基础架构与核心服务:从概念到实践
  • Python60日基础学习打卡D35
  • Python经典算法实战
  • spring+tomcat 用户每次发请求,tomcat 站在线程的角度是如何处理用户请求的,spinrg的bean 是共享的吗
  • 目标检测 RT-DETR(2023)详细解读
  • 微信小程序 隐私协议弹窗授权
  • 题目 3325: 蓝桥杯2025年第十六届省赛真题-2025 图形
  • 金众诚业财一体化解决方案如何提升项目盈利能力?
  • bitbar环境搭建(ruby 2.4 + rails 5.0.2)
  • 从零起步搭建基于华为云构建碳排放设备管理系统的产品设计
  • LabVIEW中EtherCAT从站拓扑离线创建及信息查询
  • SpringBoot-11-基于注解和XML方式的SpringBoot应用场景对比
  • Flutter 3.32 新特性
  • 前端面试热门知识点总结
  • windows和mac安装虚拟机-详细教程
  • 【Hive 开发进阶】窗口函数深度解析:OVER/NTILE/RANK 实战案例与行转列高级技巧
  • 在STM32上配置图像处理库
  • 【C++】vector容器实现